I nt roducti on

CONTENTS

RPL Principles..
2.1 O igins. ..
2.2 Mat hematical Control
2.3 Formal Definitions
2.4 Execution........
2.4.1 EVAL.
2.4.2 Data Class hjects.................
2.4.3 Identifier Class hjects...........
2.4. 4 Procedure Class hjects............
2.4.5 oj ect Skipover and SEM...........
2.4.6 RPL Pointers.......................
2.5 Menmory Management.,
2.6 User RPL and System RPL.....................
2.7 Programming in SystemRPL.
2.8 Sanple RPL Program
2.8.1 The Source File....................
2.8.2 Conmpiling the Program.............
Qhject StruCtUresS. e
3.1 Qoj eCt TYPeS. . vt
3.1.1 ldentifier Coject..................
3.1.2 Tenporary ldentifier Cbject........
3.1.3 ROM Pointer Gbject.................
3.1. 4 Binary Integer Qbject..............
3.1.5 Real Nunber Object.................
3.1.6 Ext ended Real Number Object........
3.1.7 Conpl ex Number Object..............

3.1.8 Ext ended Conpl ex Number
Qoject. ...
3.1.9 Array Qobject........
3.1.10 Linked Array Object................
3.1.11 Character String Qbject............
3.1.12 Hex String Qoject..................
3.1.13 Character oject...................
3.1.14 Unit Qbject.........
3.1.15 Code hject......
3.1.16 Primtive Code bject..............
3.1.17 Program Qoject.....................
3.1.18 List Qbject.......
3.1.19 Synmbolic Qbject....................
3.1.20 Directory QGbject...................
3.1.21 Graphics bject.......
3.2 Term nol ogy and Abbreviations...............
Binary Integers.
4.1 Built-in Binary Integers....................
4.2 Binary Integer Manipulation.................
4.2.1 Arithmetic Functions...............
4.2.2 Conversion Functions...............
Character Constants...............iiiiniiinnnenn..
Hex & Character Strings............ ...,

[

O©COOOOOUTWNN

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

6.1 Character Strings............ ...,
6.2 Hex Strings........
Real Nunmbers.........
7.1 Built-in Reals.........
7.2 Real Nunber Functions.......................
Complex Numbers. i
8.1 Built-in Conmplex Numbers....................
8.2 Conversion Words. i,
8.3 Conmplex Functions.............,
A F Y S, o
Conmposite QDjectsS.
Tagged Qnj eCtS. . ..ot
Unit QbjeCctsS. ...
Tenporary Vari abl es and Tenporary
Environments.
13.1 Structure of the Tenporary Environment

Area. ..
13.2 Named vs. Unnaned Tenporary Variables.......
13.3 Provided Wrds for Tenporary Variables......
13.4 Coding Suggestions.............. ...,
Checking Arguments.,
14.1 Nunmber of Argunents.........................
14.2 Dispatching on Argunment Type................
14.3 EXanpl es.
Loop Control Structures............ ...,
15.1 Indefinite LOOPS.
15.2 Definite LOOPS.

15.2.1 Provided Wrds.

15.2.2 Examples....... i

Error CGeneration & Tra
16.1 Trappi ng: ERRSET
16.2 Action of ERRIMP

pping.
and ERRTRAP.

16.3 The Protection Word.
16.4 Error Words.
Test and Control.......
17.1 Flags and Tests.,

17.1.1 Ceneral bject Tests...............

17.1.2 Bi nary Integer Conparisons.........

17.1.3 Deci mal Nunmber Tests...............
17.2 Words that Operate on the Runstream........
17.3 If/Then/Else..
17.4 CASE WOIrdS. ... ot
Stack Operations.
Menory Qperations.

19.1 Tenporary Menory

49

51

52

20.

21.

22.

19.2 Variables and Directories................... 89

19.2.1 Directories............ ... 91
19.3 The Hdden Directory.......... ..., 92
19.4 Additional Menmory Utilities................. 93
Di splay Managenment & Graphics..................... 94
20.1 Display Oganization........................ 94
20.2 Preparing the Display. 95
20.3 Controlling Display Refresh................. 96
20.4 dearing the Display............ 97
20.5 Annunciator Control......................... 97
20.6 Display Coordinates............ 98
20.6.1 Wndow Coordinates................. 98
20.7 Displaying Text........... .. 99
20.7.1 Standard Text Display Areas........ 99
20.7.2 Tenporary Messages................. 101
20.8 Gaphics Ghjects. 102
20.8.1 VArnings. 102
20.8.2 Gaphics Tools..................... 103
20.8.3 Gob Dinensions.................... 104
20.8.4 Built-in Gobs..................... 104
20.8.5 Menu Display Uilities............. 105
20.9 Scrolling the Display. 105
Keyboard Control 109
21.1 Key Locations. 109
21.2 Waiting for a Key....... 110
21.3 InputLine.... 111
21.3.1 InputLine Exanple.................. 112
21.4 The Paraneterized Quter Loop................ 113
21.4.1 The Paraneterized Quter Loop
Uilities...... 114
21.4.2 Overvi ew of the Paraneterized
Quter LoOp...... ..., 115
21.4.3 Handling Errors with the
Uilities...... 116
21.4.4 The Display............, 116
21.4.5 Error Handling..................... 117
21.4.6 Hard Key Assignnents............... 117
21.4.7 Menu Key Assignnents............... 119
21.4.8 Preventi ng Suspended
Environments....................... 120
21.4.9 Specifying an Exit Condition....... 120
21.4.10 ParQuterLoop Exanple............... 121
System CommaNndsS. 123

RPL PROGRAWMM NG GUI DE

1. I nt roducti on

The HP 48 cal cul ator was designed to be a custom zable

mat hemati cal scratchpad for use by students and
professionals in technical fields. In many respects it is a
descendent of the HP 41, providing a nmuch broader and nore
sophi sticated conputation capability than the HP 41, but
preserving its RPN key-per-function orientation

The HP 48 uses the so-called Saturn architecture, named by

t he code nane of the original CPU designed for the HP 71B
handhel d computer. It also uses a custom operating
system | anguage call ed RPL, which was designed to provide
synbol i ¢ mat hemati cal capabilities, executing fromROMin a
l[limted RAM environnment (it is today still the only synbolic
systemthat can run in ROM. The conbination of specialized
hardware and firmvare makes it relatively difficult to
devel op application software for the HP48, and accordi ngly
the HP48 is not positioned as a primary external application
vehicle. The orientation of the product and its user
progranmm ng | anguage i s towards sinple custom zation by the
primary user.

Despite these barriers, the price and physical configuration
of the HP48 nake it a desirable application platformfor
many software devel opers, especially those who want to
target customers in the HP48' s normal markets. The user

| anguage is suitable for sinple progranms, but for elaborate
systens, the intentional error protection and other overhead
can result in substantial performance penalties conpared
with the programs using the full range of systemcalls.

In this docunment, we will provide a description of the
design and conventions of the RPL | anguage. The materi al
here shoul d provi de enough detail to permt the creation of
RPL prograns and ot her objects, using the associated | BM
PC-based compilation tools. Included is docunention of a

| arge nunmber of system RPL objects that are useful utilities
for program devel opnent.

Page 1

2. RPL Principles

(The following material was excerpted from"RPL: A

Mat hemati cal Control Language", by W C. Wckes, published
in "Progranm ng Environnents”, Institute for Applied Forth
Research, Inc., 1988)

2.1 Oigins

In 1984, a project was started at Hew ett-Packard Corvallis
Division to devel op a new software operating systemto
stream i ne cal cul ator devel opment and support a new
generation of hardware and software. Previously, all HP
calcul ators were inplenented entirely in assenbly | anguage

a process that was becom ng increasingly cunbersonme and
inefficient as the nmenory sizes of the calculators

i ncreased. The objectives for the new operating systemwere
as follows:

+ To provi de execution control and nmenory managenent,
i ncl udi ng plug-in nmenory;

+ To provide a programm ng | anguage for rapid prototyping
and application devel opnent;

+ To support a variety of business and technica
cal cul ators;

+ To execute identically out of RAM and ROM

+ To minimze nenory use, especially RAM

+ To be transportable to various CPU s;

+ To be extensible; and

+ To support synbolic mathemati cal operations.

Several existing operating systens and | anguages were

consi dered, but none could neet all of the design
objectives. A new systemwas therefore devel oped, which
nmerges the threaded interpretation of Forth with the
functional approach of Lisp. The resulting operating
system known unofficially as RPL (for Reverse-Polish Lisp),
made its first public appearance in June of 1986 in the HP-
18C Busi ness Consultant cal cul ator. Subsequently, RPL has
been the basis for the HP-17B, HP-19B, HP-27S, HP-28C and
HP-28S, and HP 48S and HP 48SX cal cul ators. The HP-17B
18C, and 19B are designed for business applications; they
and the HP-27S scientific calculator offer an "~ al gebraic'
calculating logic, and the underlying operating systemis
invisible to the user. The HP 28/ HP 48 famlies of
scientific calculators use an RPN | ogi c, and many of the
facilities of operating systemare directly avail able as
cal cul at or commands.

Page 2

2.2 WNathematical Control

The official operating systemobjectives |isted above were
bl ended t hroughout the RPL devel opment cycle with a | ess
formal objective of creating a mathematical control |anguage
that woul d extend the ease-of-use and interactive nature of
a calculator to the real mof synbolic nmathematica
operations. A calculator is distinguished froma computer
in this context by:

+ very conpact size

+ “Tinstant on''--no warmup or software
| oadi ng/ boot st r appi ng;

+ dedi cated keys for common operations rather than qwerty
keyboar ds.

+ “Tinstant action'' when a function key is pressed.

The HP-28, which was devel oped by the sane teamthat created
the RPL operating system was the first realization of this
background objective; the HP 48 is the | atest and nost

mat ure i npl enent ati on.

Much of the design of RPL can be derived froma

consi derati on of the manner in which ordinary mathematica
expressions are evaluated. Consider, for exanple, the
expr essi on

1+ 2 sin(3x) +4

As any RPN ent husi ast knows, the expression as witten here
does not correspond in its left-to-right order to the order
in which a human or a machine could actually carry out the
calculation. For exanple, the first sumhas to be del ayed
until after several other steps are executed. Rewiting the
expression in RPN form we obtain a representation that is
al so executable in its witten order

1 2 3 X * sin * + 4 +

To translate this sequence into a control |anguage, we need
to formalize several concepts. First, we use the generic
termobject to refer to each step in the sequence, such as
1, 2, or sin. Even in this sinple exanple, there are three
cl asses of objects:

1. Data objects. Execution of an object such as 1, 2, or
3 in the exanple just returns the value of the object.

2. Nanes. The synbol x nust be the name of sone ot her

obj ect; when x is executed, the named object is
substituted for the synbol.

Page 3

3. Procedures. bjects such as *, sin, and + represent
mat hemati cal operations, which are applied, for
exanpl e, to data objects to create new data objects.

The concept of an object is closely tied to the concept of
execution, which can be thought of as the "activation" of an
object. An individual object is characterized by its object
type, which determnes its action when executed, and its

val ue, which distinguishes it from another of the sane type.

Expression evaluation in these terns becones the sequenti al
execution of a series of objects (the objects representing
the RPN form of the expression). Two constructs are
necessary to make the execution coherent: an object stack
and an interpreter pointer. The first construct provides a
pl ace from whi ch procedure objects can take their argunents
and to which they can return their result objects. A LIFO
stack as used in Forth is ideal for this purpose, and such a
stack is included in RPL. The interpreter pointer is just a
program counter that indicates the next object to be
executed. The interpreter pointer should be distinguished
fromthe CPU program counter, which indicates the next CPU

i nstruction.

A mat hemati cal expression considered as a sequence of

obj ects suggests an additional classification of objects as
either atomc or conposite. An atom c objects is an object
t hat cannot be taken apart into stand-al one objects;
exanples are a sinple data object like 1 or 2, or perhaps an
object like * or + that is inplemented normally in assenbly
| anguage. A conposite object is a collection of other
objects. In Forth, a secondary word is an exanple of a
conposite object. RPL provides at |east three types of
conposite objects: secondaries, which are prcedures defined
as unrestricted sequences of objects; synbolics, which are
sequences of objects that nmust be |logically equivalent to
al gebrai c expressions; and lists, which contain objects
collected for any | ogical purpose other than sequenti al
executi on.

The final point in this brief mathematics-to-RPL derivation
is the observation that the definition of conposite objects
| eads to the concepts of threaded interpretation and a
return stack. That is, in the exanple it it easy to imagine
that the nane object x could represent a conposite object
that in turn represents another expression. In that case,
one woul d expect execution of x to cause the intepreter
pointer to junp to the sequence of objects referenced by x,
while the location of the object following x in the origina
is stored so that execution can later return there. This
process should be able to be indefinitely repeated, so RPL
provides a LIFO stack for the return objects.

The preceding introduction mght in some respects al so have

been an introduction for the derivation of Forth, if
guestions of floating-point versus integer arithnetic are

Page 4

ignored. In particular, both systens use threaded
interpretation and a LI FO data stack for interchange of
objects. However, there are several inportant differences
bet ween Forth and RPL:

+ RPL supports both direct and indirect threaded
execution in a conpletely uniform manner

+ RPL supports dynamc allocation of its objects.

+ RPL code is, in general, conpletely rel ocatable.

2.3 Formal Definitions

This section will present the abstract definitions of RPL
that are independent of any particular CPU or
i mpl enent ati on.

The fundanental structure in RPL is the object. Any object
consists of a pair: the prol ogue address and the object
body.

RS +
| -> Prol ogue

RS +
| Body |
RS +

The two parts are contiguous in nenmory with the prol ogue
address part in |lower nenory The prol ogue address is that of
a machi ne-code routine that executes the object; the body is
data used by the prologue. bjects are classified by type;
each type is associated with a unique prologue. The

prol ogues thus serve a dual purposes of executing an object
and identifying its type.

An object is either atomic or conposite. A conposite object
is either null or non-null; a non-null conposite has a head
which is an object and a tail which is conposite.

In addition to being executed, all RPL objects can be

copi ed, conpared, enbedded in conposite objects, and
skipped. The latter property inplies that the menory | ength
of any object is predeterm ned or can be conputed fromthe
object. For atom c objects such as real nunbers, the size
is invariant. For a nore conplicated atom c object such as
a nunerical array, the size can be conputed fromthe array
di mensions that are stored in the body of the array object.
(RPL arrays are not conposite--the elenents do not have

i ndi vi dual prol ogues and hence are not objects.) Conposite
objects may include a length field or they may end with a
mar ker obj ect .

A pointer is an address in the nenory space of the CPU, and
may be a location pointer or an object pointer. A |ocation
poi nter addresses any part of menory, whereas a object

poi nter point to an object, specifically to the prol ogue

| ocation pointer at the start of an object.

Page 5

RPL requires, in addition to the CPU program counters, five
variables for its fundanental operation

+ The interpreter pointer 1.

+ The current object pointer O
+ The data stack pointer D

+ The return stack pointer R

+ The anount of free nmenmory M

In the nost general definition of RPL, | is an object

poi nter pointing to a conmposite object that is the top of a
stack of conposite objects called the runstream R points
to the rest of the runstream stack. In practica

i npl enentations, this definition is streamined by allow ng
| to point to any object enbedded in a conposite, while Ris
a location pointer pointing to the top of a stack of object
poi nters, each of which points to an enbedded object.

It is fundanental to RPL that objects can be executed
directly or indirectly with equivalent results. This neans
that an object can be represented anywhere by a pointer to
the object as well as by the object itself.

2.4 Execution

RPL obj ect execution consists of the CPU execution of the
obj ect's prol ogue, where the prol ogue code can access the
obj ect's body by neans of the object pointer O (Object

poi nter execution is the CPU execution of the pointer's
addressee. This interpretive execution is controlled by the
inner interpreter, or inner |oop, which determ nes the
sequence of object/object pointer execution

RPL objects are sorted by their general execution properties
into three cl asses:

* (hjects that nmerely return thenselves to the data stack
when executed are called data class objects. Exanples are
real nunbers, strings, and arrays.

* (hjects that serve as references for other objects are
called identifier class objects. RPL defines three
identifier class object types: identifier (global nane),
tenmporary identifier (local nane), and ROM pointer (XLIB
nane) .

* (bjects that contain bodies into which execution flow can
pass are called procedure class objects. There are three
types of procedure class objects: prograns (also called a
"secondaries" or a "colon-definitions" in Forth
term nol ogy), code objects, and prinmtive code objects.

Page 6

The RPL inner |oop and prol ogue designs provide for

i nterchangeabl e direct and indirect object execution (note:
a patent application has been filed for the concepts

descri bed next). The inner |oop consists of the follow ng
pseudo- code

O=1I]
| | + delta
PC=[Q + delta

where [x] neans the contents of address x, and delta is the
length of a nenory address. This loop is the same in Forth,
except that the CPU execution junps to [+delta instead of
to [O. This is because all RPL prologues start with their
own address, which is the feature that makes possible direct
execution as well as indirect. Prologues |ook like this:

PROLOG ->PROLOG Sel f address
IF O+ delta '= PC THEN GOTO REST Test for direct execution
O=1 - delta Correct O
Il =1 + len Correct |

REST (rest of prol ogue)

Here len is the I ength of the object body.

VWhen an object is being executed directly, the inner |oop
does not set Oor | correctly. However, a prologue knows it
is being executed directly by conparing the PC address with
O and can update the variables accordingly. A prologue is
al so responsible for preserving the threaded interpretation
by including a return to the inner loop at its end.

This flexible interpretation is intrinsically slower than
the indirect-only execution (like Forth), because of the
overhead of making the direct/indirect test. 1In practica

i npl enentations of RPL, it is possible to shift the overhead
al nost entirely to the direct execution case, so that the
execution penalty for the indirect case is negligible,
including primtive assenbly | anguage objects that are never
executed directly. The trick is to replace the |ast step of
the inner loop with the Forth-like PC =[Q, and, for

prol ogues of directly-executable objects, replace the self-
address at the start of each prologue with a slice of
execut abl e code delta in | ength. The conpil ed opcodes of
this slice nust also be the address of a neta-prol ogue that
handl es the direct execution case. In Saturn CPU

i npl enent ati ons, the code slice consists of the instruction
M=Mt 1 (decrenenting avail able nmenory is common to virtually
all directly-executable object prologues) plus a NOP
instruction to fill out the delta I ength.

The virtue of direct execution is that it enables the
strai ghtforward managenent of nanel ess objects that are
created during execution. During the course of synbolic
al gebrai ¢ mani pulations, it is conmon to create, use, and
di scard any nunber of tenporary internediate results; the

Page 7

necessity to conpile and store these objects with sonme form
of name for indirect reference, then unconpile themto
recover menory, woul d nmake the whol e process unnmanageabl e.
In RPL such objects can be placed on the stack, copied,
enbedded i n conposite objects, executed, and deleted. For
exanpl e, a conposite object representing the expression x +
y can be added to a second object representing 2z, returning
the result object x + y + 2z; furthernore, any of these

obj ects could be enbedded in a program object to performthe
addition repetitively.

Although RPL is primarily a syntax-less postfix |anguage in
whi ch procedures take their argunents fromthe stack and
return results to the stack, it does provide operations that
work on the runstreamto provide for prefix operations and
for alterations to the normal threaded execution. Forenost
anong the runstream operations is the quoting operation that
takes the next object fromthe runstream and pushes it on
the data stack to postpone its execution. This operation is
simlar in purpose to the Lisp QUOTE, but takes its RPL nane
" (tick), fromits Forth equivalent. RPL al so has operations
to push and pop objects fromthe return stack. (DO | oop

par anmeters, however, are not stored on the return stack
using a speci al environnent instead.)

2.4.1 EVAL An object on the data stack may be indirectly
executed by neans of the RPL word EVAL, which pops an object
fromthe stack and executes its prolog. The system object
EVAL shoul d be distinguished fromthe user RPL conmand EVAL.
The latter is equivalent to system EVAL except for lists,
synbol i ¢ obj ects, and tagged objects. For a tagged object,
user EVAL executes the object contained in the body of the
tagged object. For lists and synbolics, user EVAL

di spatches to the system word COVWPEVAL, which executes the
object as if it were a program (see bel ow).

Page 8

2.4.2 Data_Cass_njects Object types in this class are:
Binary Integer Object (note: the user RPL binary integer is actually
a hex string object in systemRPL terns.)
Real bj ect
Ext ended Real bject
Conpl ex bj ect
Ext ended Conpl ex Obj ect
Array Object
Li nked Array Obj ect
Character String Object
Hex String bject
Character Object
G aphi cs Obj ect
Unit Object
Li st Obj ect
Synbolic Object ("al gebraic object")
Li brary Data Obj ect
Directory (bject
Tagged bj ect
Ext ernal bj ect

Al'l objects in the data class have the property that, when
executed, they sinply place thenselves on the top of the
data stack.

2.4.3 ldentifier_Class_(bjects bject types in this class
are:

ROM Poi nter Obj ect (XLIB nane)
Identifier Object (global nane)
Tenporary ldentifier Object (local nane)

hjects in the identifier class share the property that they
serve to provide references for other objects. Identifier

obj ects represent the resolution of global variables, and
ROM Poi nter Objects represent the resolution of commands
stored in libraries. Tenporary identifier objects, on the
ot her hand, provide references for tenporary objects in

t empor ary environments.

Execution of a ROM pointer object (by the DOROW prol ogue)
entails locating and then executing the referenced ROV WORD
object part. Non-location is an error condition

Execution of an identifier object (by the DO DNT prol ogue)
entails locating and then executing the referenced gl oba
vari abl e object part. Non-location returns the identifier
obj ect itself.

Execution of a tenporary identifier object (by the DOLAM
prol ogue), entails locating the referenced tenporary object
and pushing it on the data stack. Non-location is an error
condi ti on.

Page 9

2.4.4 Procedure_C ass_(njects Object types in this class
are:

Code nj ect
Primtive Code (bject
Pr ogr am Obj ect

hjects in the procedure class share the property of
executability, that is, executing a procedure class object
i nvol ves passing control to executable procedure or code
associ ated with the object.

Code objects contain assenbly | anguage sequences for direct
execution by the CPU, but are otherw se nornal, relocatable
objects. Primtive code objects have no prolog in the usua
sense; the prolog address field points directly to the

obj ect body, which contains an assenbly | anguage sequence.
These objects can only exist in permanent ROM and can never
be executed directly. Wen a code object or primtive code
object is executed, control is passed (by setting the PC) to
t he machi ne | anguage instruction set contained in the object
body. For a primtive code object, this control passing is
done by the execution nechanism (EVAL or the inner |oop)
itself. For a code object, the prol ogue passes control by

pl acing the PC at the begi nning of the machi ne | anguage
slice contained in the object body. Note again that a
primtive code object prologue (which is its body) need not
contain logic to test for direct verses indirect execution
(nor contain code to update I or O since, by definition, it
i s never executed directly.

Execution of a programis sequential execution of the

obj ects and object pointers that conprise the body of the
program The execution is threaded in that the objects in a
program may thensel ves be secondaries or pointers to
secondari es. Wen encountered by the inner |oop, an
enbedded programis executed prior to resunption of
execution of the current one.

The end of a programis narked by the object SEM (from
"semcolon"--a ";" is the closing delimter recognized by
the RPL conpiler to mark the end of a program definition).
Execution of SEM pops the top object pointer fromthe

return stack and resunes execution at that point.

2.4.5 (bject_Skipover_and_SEM One of the basic prem ses
of RPL is that any RPL object that can be directly executed
(whi ch includes all object types except primtive code

obj ects) nust be traversable, that is, must have a structure
which allows it to be skipped over. Object skipover occurs

t hroughout the RPL system but npbst notably during direct
execution by the inner | oop when the interpreter pointer |
must be set to point to the next object after the one being
directly executed.

Page 10

There exi st both RPL objects and utilities to performthis
obj ect skipover function. In addition, objects are required
to ski pover thensel ves when being executed directly. The
ski pover nmechani smfor atomc objects is sinple and
straightforward since the object length is either known or
is easily conputable. For the conposite objects (program
list, unit, synbolic) the length is not easily conputable
and the skipover function here is sonmewhat nore invol ved,
using an inplicit recursion. These conposite objects do not
carry known or easily conmputable Iength informtion and
therefore nust have a tail delimter, nanely an object
pointer to the primtive code object SEM. Note that SEM
serves an explicit function for the program object (the
procedure class conposite object); for data class conposite
objects (list, unit, and synbolic objects), it only serves
as a tail delimter.

2.4.6 RPL_Pointers A pointer is defined to be an address
and may be either a location pointer or an object pointer. A
| ocation pointer addresses any segnent of the nenory map
whi | e an object pointer specifically addresses an object.
Note that, for exanple, the prol ogue address part of an
object is a location pointer

2.5 Menory Managenent

The uniformty of direct and indirect execution neans not
only that objects as well as object pointers can be enbedded
in the execution stream but also that object pointers can
logically replace objects. In particular, the RPL data and
return stacks explicitly are stacks of object pointers.

This nmeans, for exanple, that an object on the data stack
can be copied (e.g. by DUP) at a cost of only delta bytes of
menory, regardl ess of the size of the object. Furthernore,
duplication and simlar stack operations are very fast.

O course, the objects referenced on the stacks nust exist
somewhere in nmenory. Many, including all of the system

obj ects that provide system managenment and an application

| anguage, are defined in ROM and can be referenced by a

poi nter with no ot her housekeeping inplications. bjects
created in RAM may exist in two places. Those that are
unnamed are stored in a tenporary object area, where each is
mai ntained as long as it is referenced by a pointer anywhere
in the system(this inplies that if a tenporary object

nmoves, all pointers to it nust be updated). Nam ng an

obj ect consists of storing it as a pair with a nane field in
a linked-list called the user object area. These objects
are maintained indefinitely, until they are explicitly
purged or replaced. A naned object is accessed by neans of
an identifier object, which consists of an object with a
nane field as its body. Executing an identifier causes the
user object area to be searched for an object stored with
the sane nanme, which is then executed. This run-tine

Page 11

resolution is intrinsically slower than the conpile-tine
resol ution used for ROM objects, but it allows for a dynanmic
and flexible systemwhere the order in which objects are
conpiled is immterial.

The process of nami ng objects by storing themw th nanes in
the user object area is augnented by the existence of |oca
environnents, in which objects can be bound to nanmes (Il anbda
variables) that are local to a currently executing
procedure. The binding is abandoned when the procedure
conpl etes execution. This feature sinpifies conplicated
stack mani pul ati ons by allowi ng the stack objects to be
naned and then referenced by nane within the scope of a
defini ng procedure.

RPL provides that any object stored in the user object area
can be deleted wi thout corrupting anything in the system
This requires certain design conventions:

+ When a RAM object is stored in the user object area, a
new copy of the object is stored, not a pointer to the
obj ect.

+ Pointers to RAM objects are not permitted in conposite
objects. Wen a conposite object is created from stack
objects, RAM objects are copied and directly enbedded
in the conmposite. Wen a stored object is represented
by nane in a conposite, it is the identifier object
that is enbedded, not a |location pointer as in Forth.

+ If a stored object is referenced by any pointers on the
stacks at the tine when it is purged, it is copied to
the tenporary object area and the pointers to it are
updat ed accordingly. This nmeans that the nmenory
associ ated with an object is not recovered until the
last reference to it is deleted.

The use of tenporary objects with nultiple references neans
that a tenporary object can not necessarily be deleted from
menory imredi ately when a single reference to it is
elimnated. |In current RPL inplenentations, no nenory
recovery at all is performed until the systemruns out of
menory (M=0), at which tinme all unreferenced objects in the
tenporary object area are deleted. The process, called
"garbage collection" can be significantly time-consum ng, Sso
that RPL execution does not proceed uniformy

Fromthe preceding discussion, it will be apparent that RPL
is not as fast in general as Forth because of its extra
interpretation overhead and greatly el aborated nmenory
managenent schene. \While maxi mum execution speed is al ways
desirabl e, the design of RPL enphasizes its role as an

i nteractive mathematical control |anguage in which
flexibility, ease of use, and the ability to manipul ate
procedural information are paranount. |In many cases, these
attributes of RPL result in faster problemsolving

Page 12

t hr oughput than Forth, which executes faster but is nore
difficult to program

RPL al so provides for objects that are internedi ate between
those fixed in ROM and those that are nobile in RAM A
library is a collection of objects, organized in a pernmanent
structure that permts parse-tinme and run-time resolution by
means of tables included in the library. An XLIB nane is an
identifier class object that contains a |library nunber and
an object nunber within the Iibrary. Execution of an XLIB
nane executes the stored object. The identities and

| ocations of libraries are determ ned at system
configuration. A particular library can be associated with
its owmn RAMdirectory, so that, for exanple, a library m ght
contai n permanent formulas for which the variable values are
mai nt ai ned in RAM

2.6 User RPL and System RPL

There is no fundanental difference between the HP 48
progranmm ng | anguage, which we will call "user RPL," and the
"system RPL" in which HP 48 functionality is inplenented.
User | anguage prograns are executed by the same inner |oop
interpreter as systemprograns, with the sanme return stack
The data stack displayed on the HP 48 is the sanme as that
used by system progranms. The distinction between user RPL
and system RPL is only one of scope: user RPL is a subset of
system RPL. User RPL does not provide direct access to al

of the data class object types that are avail able; the use
of built-in procedures is linmted to those that are provided
as commands.

A "command" is procedure-class object stored in a library,
along with a text string that serves as the conmand' s nane.
The nane is used for conpiling and deconpiling the object.
VWhen the conmand |ine parser matches text in the comrand
line with a cormand nane, it conpiles an object pointer if
the conmand is contained in a library in the HP 48's
permanent ROM O herwise it conpiles the correspondi ng XLIB
nane. Al so, built-in command objects are preceded i n ROM by
a six-nibble field that is the body of an XLIB nane. When

t he deconpil er encounters an object pointer, it |ooks for
this field in the ROM ahead of the object; if it finds a
valid field, it then uses the information there to |ocate a
text command nane to display. Oherwise, it deconpiles the
obj ect itself.

Commands are di stingui shed from ot her procedure objects by
certain conventions in their design. Structurally, al
commands are program objects, the first object in which is
one of the system di spatch objects CKO, CK1&Di spatch

CK2&Di spat ch, CK3&Di spat ch, CK4&Di spatch, and CK5&Di spatch
(see section 13). CKO, which is used by zero-argunent
conmands, may be foll owed by any additional objects.

CK1&Di spatch ... CK&Di spatch nmust be followed by a sequence

Page 13

of pairs of objects; the first of each pair identifies a
stack argunent type conbination, and the second specifies
the object to execute for each correspondi ng conbi nation
The last pair is foll owed by the end-program nmarker object
(SEM).

The ot her command obj ect conventions govern their behavior
In particular, they shoul d:

* renmpve any tenporary objects fromthe stack, returning
only the specified results;

* do any range checki ng necessary to ensure that errors do
not occur that m ght cause disasters;

* restore HP48 nodes to their original states, unless the
command is specifically for changing a node.

The overhead involved in these structure and behavi or
conventions does inpose a mnor perfornmance penalty.

However, the primary execution speed advant age of system RPL
over user RPL cones sinply fromthe | arger set of available
procedures in system RPL, access to fast binary arithnetic,
and i nmproved control over systemresources and execution
flow

2.7 Programmng in System RPL

Witing progranms in systemRPL is no different in principle
than in user RPL; the difference lies in the syntax and
scope of the conpiler. For user RPL, the conpiler is the
command |ine ENTER, the logic of which is docunented in the
owners' manuals. For system RPL devel oped on a PC, the
conpil er has several parts. The i mediate anal og of the
command |ine parser is the program RPLCOWP, which parses
source code text into Saturn assenbly | anguage. (The syntax
used by RPLCOW is described in xxx.) The output of RPLCOWP
is passed to the assenbl er program SASM whi ch produces
assenbl ed obj ect code. The program SLOAD resol ves synbol
references in SASMs output, finally returning executable
code suitable for downl oading into the HP 48. |ndividua
objects can be collected in an HP 48 directory that is
transferred back to the PC, where the program USRLI B can
transformthe directory into a library object. (It would be
desirable to create a library directly on the PC, but the
programto do this is not available at present.)

For the purpose of illustration, consider a hypothetica

proj ect devel opnent process that will result in a library
obj ect constructed with the USRLIB tool. The library is to
contain a single comand, BASKET, which cal cul ates basket
weavi ng factors according to several input paraneters.
BASKET shoul d be designed with the structure described above
for conmands. |In addition, assunme that BASKET calls severa
ot her prograns which are not to be user-accessible. To

Page 14

achieve this, the objects are conpiled on the PC, then

downl oaded into the HP 48 in a common directory, stored as
BASKET, Bl1, B2, ... , where the latter variables contain the
subroutines. The directory is uploaded to the PC, where
USRLIB is applied to it with the directive that Bl, B2,

are to be "hidden."

There is no requirenent that a program produced with the RPL
conpil er nust be presented in a library object - if the
entire application can be witten within a single program
then so nmuch the better. As prograns grow beyond sone
reasonabl e | evel of conplexity, this becones nore difficult,
and a library object approach with nultiple variables
becones easier to manage.

1. Create the source file on the PC using your favorite
editor. The programsource file nane should have a
".s" extension, such as "prog.s". Use the conpiler
RPLCOWP. EXE to produce the Saturn assenbl er source
file "prog.a".

2. Use the Saturn assenbl er SASM EXE to assenbl e the
program and produce an output file "prog.o".

3. Use the Saturn | oader SLOAD. EXE to resol ve your
programis calls to HP 48 operating system SLQAD. EXE
output files may have any nane, but the ".ol"
extension is often used.

4. Download the final file (use binary transfer!) to the
HP 48, and try out your code.

5. Upload the directory containing one or nore objects to
the PC, and use USRLIB.EXE to convert it to a library.

Page 15

2.8 Sanple RPL Program

To get acquainted with the process of producing a program
witten in internal RPL, consider the foll ow ng exanple,
which we'll call TOSET

2.8.1 The Source File

Thi s program renoves duplicate objects froma list by
deconposing the list into a series of objects on the stack
creating a new enpty list, and putting the stack objects
into the new list if they' re unique.

* ({list} --> {list}')
ASSEMBLE

NI BASC / HPHP48- DI
RPL

" CKLNOLASTWD (*Req. 1 argunment*)
CK&DI SPATCHO | i st

DUPNULL{}? ?SEM *Exit for enpty list*)

(

| NNERCOWP (objn . obj 1 #n)
reversym (objl ... objn #n)
NULL{} SWAP (objl ... objn {} #n)
ZERO DO (DO

SWAP (objl ... objn-1 {} objn)

apndvar | st (objl1 ... objn-1 {}')
LOOP

The first line is a comment, showi ng the input and out put
conditions for the program Coments are denoted by an
asterisk (*) in the first colum, or within parentheses.
Every programer has their own style for comments. The style
shown here is that objects are shown with stack | evel one on
the right. Text is enclosed in asterisks.

The sequence

ASSEMBLE
NI BASC / HPHP48- DY
RPL

is a comand to the assenbler that includes the header for
bi nary data transfer fromthe PCto the HP48. This is

i ncl uded here for sinplicity, but could be included from
another file by the | oader.

The first command, CKINCLASTWD, requires the stack contain

at least one item and clears the ram| ocation which stores
the nane of the current command. This is inportant, because

Page 16

you don't want to attribute errors encountered in this
programto the |last function that generated an error

The second command, CK&DlI SPATCHO, reads a structure of the
form

type action
type action

to decide what action to take based on the TYPE of object

presented. |If the type of object in level 1 does not have
an entry in the table, the error "Bad Argunment Type" will be
generated. In this exanple, only one type of argunment, a

list, is acceptable, and the corresponding action is a
secondary. For nore on argument checki ng commands, see the
chapter "Argunment Validation".

The conmand DUPNULL{}? returns the |ist and a TRUE/ FALSE
flag which indicates if the list is enpty. The command
?SEM exits the secondary if the flag is TRUE

The conmand | NNERCOWP is an internal formof the user word
LI ST->. The nunber of objects is returned in |level one as a
bi nary integer (see the chapter "Binary |Integers").

The conmand "reversynt reverses the order of #n objects on
the stack. This is used here to account for the ordering of
objects placed in a list by the "apndvarlst” which is

descri bed bel ow

The ZERO DO conmand begins a counted | oop. This loop will
process each object in the original list. The (DO conmand
tells RPLCOWP that this is the start of a | oop, otherw se
the LOOP command woul d be fl agged as unmat ched

The "apndvarl st” conmand appends an object to a list if and
only if that object does not appear in the list already.

The LOOP conmand ends the | oop. For nore on | oop comuands,
see the chapter "Loop Structures”.

Page 17

2.8.2 Conpiling_the Program To conpile the programfor the
HP 48, follow these steps:

1. Store the exanple code in a file TCSET. S.
2. RPLCOW TOSET. S TOSET. A

This command conpiles the RPL source and produces a
Saturn assenbl er source file.

3. SASM TOSET. A

This command assenbl es the Saturn source file to
produce the files TOSET.L and TGCSET. O

4. The file TOSET.Mis a | oader control file that | ooks

i ke this:

TI TLE Exanpl e <-- Specifies a listing title
QUTPUT TOSET <-- Specifies the output file
LLI ST TOSET. LR <-- Specifies the listing file
SUPPRESS XREF <-- Suppresses the cross ref
SEARCH ENTRI ES. O <-- Reads HP48 entries

REL TCSET. O <-- Loads TCSET.o

END

Create the file TOSET. M and i nvoke the | oader:

SLOAD -H TOSET. M
Check the file TOSET.LR for errors. An unresol ved reference
usual ly points to a m sspelled command. Now downl oad the
file TOSET into the HP 48 and give it a try!

Enter the list {

1223334}, evaluate TOSET, and you
should get { 1 2 3 4 }.

Page 18

3. (Object Structures

Thi s chapter provides additional information about sone of
the RPL object types supported by the HP 48. Although the
information is primarily relevant to assenbly | anguage
progranmm ng, a know edge of object structure can often help
i n under st andi ng perfornmance and efficiency issues in RPL
pr ogr anm ng.

Unl ess explicitly stated otherwi se, all specifically-defined
fields within an object body are assuned to be 5 nibbles,
the CPU address w dth.

3.1 nject Types

3.1.1 Ildentifier_Qbject

An identifier object is atom c, has the prol ogue DO DNT, and
a body which is an I D Nanme form

RS +

| -> DA DNT | Prol ogue Address

R + Identifier
| 1D NAME FORM | Body bj ect
RS +

An ID nane formis a character sequence preceded by a one-
byte character count field.

Identifier objects are, anong other things, the conpiletine
resol uti on of gl obal vari abl es.
3.1.2 Tenporary_ldentifier_QObject

A tenporary identifier object is atomc, has the prol ogue
DOLAM and a body which is an I D nanme form

RS +

| -> DOLAM | Prol ogue Address Tenpor ary
R + Identifier
| 1D NAME FORM | Body bj ect
RS +

Tenporary identifier objects provide named references for
tenmporary objects bound to the identifiers in the fornal
paranmeter |list of a tenporary variable structure.

Page 19

3.1.3 ROM Pointer_Object

A ROM poi nter object, or XLIB nanme, is atonmic, has the
pr ol ogue DOROWP, and a body which is a ROMWRD identifier.

B SR +

| - > DOROWP | Prol ogue Address
o + ROM

| | Poi nt er
| Command | Body hj ect
| Identifier |

e .

ROM poi nter objects are the conpiletinme resolution of
conmmands in nobile libraries. A command indentifier
identifier is a pair of 12 bit fields: the first field is
library 1D nunber, and the second field is the conmand |1 D
nunber within the library.

a

3.1.4 Binary_Integer_Object

A binary integer object is atomc, has the prol ogue DOBI NT,
and a body which is a 5-nibble nunber.

B SR +

| -> DOBI NT | Prol ogue Address

B SR +

| | Bi nary
| Nunber | Body I nt eger
| | hj ect
B SR +

The use of this object type is to represent binary integers
whose precision is equivalent to a nmenory address.

3.1.5 Real _Nunber_Object

A real nunber object is atom c, has the prol ogue DOREAL, and
a body which is a single-precision floating point nunber (or
real nunber, for short).

B +

| -> DOREAL | Prol ogue Address

B +

| o

| Single-precision| Real Nunber
| Floating Point | Body hj ect

| Number |

| |

B +

Page 20

One use of this object type is to represent packed
floating-point nunbers (eight bytes) on a Saturn system and,
in this application, the body of the object may consist of
16 BCD ni bbl es as foll ows:

(1 ow mem EEEMVVMVVVIVMVIVMVIMIVES

where S is the nunmeric sign (0 for nonnegative and 9 for
negative), MWMVMVWMVMM is a 12 digit mantissa with an

i nplied deci mal point between the first and second digits
and the first digit nonzero if the nunber is nonzero, and
EEE t he exponent in tens conplenent form (-500 < EEE < 500).

3.1.6 Extended_Real Nunber_Obj ect

An extended real nunber object is atomic, has the prol ogue
DCEREL, and a body which is an extended-precision floating
poi nt nunmber (or extended real, for short).

B +

| -> DOEREL | Prol ogue Address

B +

| | Ext ended

| Ext ended- | Real Nunber
| precision | hj ect

| Floating Point | Body

| Number |

| |

B +

One use of this object type is to represent unpacked
floating-point nunbers (10.5 bytes) on a Saturn system and,
in this application, the body of the object may consist of
21 BCD ni bbl es as foll ows:

(1 ow mem EEEEEMVWMVIVMVMVIVMVIMIVIS

where S is the nunmeric sign (0 for nonnegative, 9 for
negative), MVWWMWMWWMW is a 15 digit mantissa with an

i nplied deci mal point between the first and second digits
and the first digit nonzero if the nunber is nonzero, and
EEEEE t he exponent in tens conplenent form (-50000 < EEEEE <
50000) .

Page 21

3.1.7 Conpl ex_Nunber _(bj ect

A conpl ex nunber object is atom c, has the prol ogue DOCVP
and a body which is a pair of real nunbers.

B SR +

| -> DOCWP | Prol ogue Address

B SR +

| | Conpl ex
| Real Nunber | hj ect

| e | Body

| Real Nunber |

e .

The use of this object type is to represent single-precision
conpl ex nunmbers, where the real part is interpreted as the
first real nunmber in the pair.

3.1.8 Extended_Conpl ex_Nunber _Obj ect

An extended conpl ex nunber object is atom c, has the
prol ogue DOECWP, and a body which is a pair of extended real
nunbers.

| |

| Nunber | Ext ended

| - | Body Conpl ex Nunber
| Extended Real | hj ect

| Nunber |

| |

B SR +

The use of this object type is to represent extended-
preci sion conpl ex nunbers in the same way as for the conpl ex
obj ect.

Page 22

3.1.9 Array_(nject

An array object is atom c, has the prol ogue DOARRY, and a

body which is a collection of the array el ements. The body
also includes a length field (indicating the length of the
body), a type indicator (indicating the object type of its
el ements), a dinension count field, and length fields for

each di nensi on.

| -> DOARRY | Prol ogue Address

Length Field

Type | ndi cat or

Di nensi on Count

Di nension 1 Length

Di nensi on 2 Length
Array
hj ect

Body

Di nensi on N Length

The array el ements are object bodies of the same object
type. The type indicator is a prologue address (think of
this prol ogue address as applying to each el enent of the
array).

Array "OPTION BASE" is always 1. A null array is designated
by any dimlinmt having the value zero. Al elenents of an

array object are always present as indicated by the

di mensionality information and are ordered in nenory by the
| exi cographi c order of the array's indices.

3.1.10 Linked_Array_(nject

A linked array object is atomc, has the prol ogue DOLNKARRY,
and a body which is a collection of the array el enents. The
body al so includes a length field (indicating the |Iength of
the body), a type indicator (indicating the object type of
its elenents), a dinmension count field, length fields for
each di nension, and a pointer table whose contents are
forward self-relative offsets to the array elenents; the

el ements of the pointer table are ordered in nmenory by the

Page 23

| exi cographi c order of the array's indices.
| -> DOLNKARRY | Prol ogue Address

Length Field

Type | ndi cat or

Di nensi on Count

Di nension 1 Length

Di nension 2 Length
............ Li nked
Array
hj ect

Body

Di nensi on N Length

Poi nter Tabl e

The array el ements are object bodies of the same object
type. The type indicator is a prol ogue address (think of
this prol ogue address as applying to each el enent of the
array).

Li nked array "OPTION BASE" is always 1. A null |inked array
is designated by any dimlimt having the value zero. There
is no assunption on the ordering of the elenments of a |inked
array object, nor on their presence; absence of an el ement
lying on an allocated dinmension is indicated by the val ue
zero occupyi ng the correspondi ng pointer table el ement.

Page 24

3.1.11 Character_String_Object

A character string object is atom c, has the prol ogue
DOCSTR, and a body which is a character string (a byte
sequence). The body also includes a length field (indicating
the I ength of the body).

R +
| -> DOCSTR | Prol ogue Address
R +
Char act er
Length Field String

| |

| | _

| c-emeeeee--- | Body Qoj ect
| |

| |

3.1.12 Hex_String_Object

A hex string object is atom c, has the prol ogue DOHSTR, and
a body which is a nibble sequence. The body al so includes a
length field (indicating the I ength of the body).

R +
| -> DOHSTR | Prol ogue Address
R +
Hex
Length Field String

| |

| | _

| - | Body Qoj ect
| |

| |

A typical use for this object type is a buffer or table.
Hex string objects of 16 nibbles or fewer are used to
represent user RPL binary integer objects.

3.1.13 Character_Qbject

A character object is atomc, has the prol ogue DOCHAR, and a
body which is a single byte.

R +

| - > DOCHAR | Prol ogue Address
R +

| | Char act er
| Byt e | Body hj ect

| |
R +

This object type is used to represent one-byte quantities,
such as ASCII or ROVANB characters.

Page 25

3.1.14 Unit_Qnject

A unit object is conposite, has the prol ogue DCOEXT, and
a body which is a sequence consisting of a real nunber

foll owed by unit nane strings, prefix characters, unit

operators, and real nunber powers, tail delimted by a

pointer to SEM.

3.1.15 Code_(nj ect

A code object is atomc, has the prol ogue DOCODE, and a body
which is an assenbly | anguage slice. The body al so i ncl udes
a length field (indicating the I ength of the body). Wen
execut ed, the prol ogue places the system program counter at
the assenbly | anguage slice within the body.

S +

| -> DOCCDE | Prol ogue Address
S +

| | Code nj ect
| Length Field |

| - | Body

| Assenmbly Language

| Slice |

| |

S +

The maj or applications for this object type are assenbly
| anguage procedures which can be directly enbedded in
conposite objects or exist in RAM

Page 26

3.1.16 Primtive_Code_Object

A primtive code object is a special case of a code object,
used to represent code prinmtives in built-in libraries.

The prol ogue of a primtive code object is its body, which
is an assenbly | anguage slice; thus, when executed, the body
executes itself.

B SR +

R | Prol ogue Address
B SR +

L >| | Primtive
| Assenmbly Language| Body Code nj ect
| Slice |
| |
B SR +

The primary purpose of this object type is nore rapid
execution of code objects in built-in libraries, that is,
these objects are executed without the extra | evel inherent
in separate prol ogue execution. However, their structure
inplies that (1) they can only exist in built-in libraries
(never in RAMor nobile libraries) since the body must exi st
at a fixed address, (2) they cannot be skipped, and (3) they
cannot exist in any situation where traversal may be

requi red, such as an elenment of an array or an object within
any conposite object.

Note that this object type is an exception to the object
type classification schene presented at the begi nning of
this docunent. However, an object is a primtive code object
if and only if the prol ogue address equal s the object
address plus 5. In addition, the prol ogues for this object
type (that is, the object bodies) need not contain logic to
test for direct verses indirect execution since, by
definition, they cannot be executed directly.

3.1.17 Program bj ect

A program obj ect (secondary) is conposite, has the prol ogue
DOCOL, and a body which is a sequence of objects and object
poi nters, the last of which is an object pointer whose
pointee is the primtive code object SEM.

B SR +

| -> DOCOL | Prol ogue Address
B SR +

| _ |

| oj ect/ | Secondary
| Object Pointer | hj ect

| Sequence |

| e | Body

| -> SEM |

| |

B SR +

Page 27

3.1.18 List_(nject

A list object is conposite, has the prol ogue DOLI ST, and a
body which is a sequence of objects and object pointers, the
| ast of which is an object pointer whose pointee is the
primtive code object SEM.

B SR +

| -> DALIST | Prol ogue Address
B SR +

| _ | _

| oj ect/ | Li st

| Object Pointer | hj ect
| Sequence |

| e | Body

| -> SEM |

| |

B SR +

3.1.19 Synbolic_Object

A synbolic object is conposite, has the prol ogue DOSYMB, and
a body which is a sequence of objects and object pointers,
the Iast of which is an object pointer whose pointee is the
primtive code object SEM.

B SR +

| -> DOSYMB | Prol ogue Address
B SR +

| _ | _
| oj ect/ | Synbolic
| Object Pointer | hj ect

| Sequence |

| e | Body

| -> SEM |

| |

B SR +

This object type is used to represent synbolic objects for
synbol i c math applications.

Page 28

3.1.20 Directory_Qbject

A directory (RAMROWAIR) object is atomic, has the prol ogue
DORRP and a body which consists of a Library ID nunber and a
RAMPART (linked list of variabl es--object/nane pairs.

RS +

| -> DORRP | Prol ogue Address
RS +

| | RAMROVPAI R
| ROWPART ID | bj ect
|- | Body

| RAMPART |

RS +

3.1.21 &G aphics_Object

A graphics object is atonm c, has the prol ogue DOGROB and a
body whi ch consists of the follow ng:

+ A5 nibble length field for the data which foll ows.

+ A five nibble quantity that describes the height of the
graphic in pixels.

+ A five nibble quantity that describes the width of the
graphic in pixels.

+

The dat a.

The actual row dinmension in nibbles (W is always even for
har dwar e reasons, hence each row of pixel data is padded
wi th anywhere fromO-7 bits of wasted data.

RS +

| -> DOGROB | Prol ogue Address
RS +

| Len(ni bs) |

RS +

| Height (pixels)]| G aphi cs
R + Body hj ect

| Wdth (pixels) |
RS +

| G ob Data |

| Ca |

RS +

The data ni bbles begin at the upper-left corner of the
graphi cs object and proceed left-to-right, top-to-bottom
Each row of pixel data is padded as needed to obtain an even
nunber of nibbles per row. Thus the width in nibbles Wis
det ermi ned by:

WECEI L(Wdth in pixels)/8

Page 29

The bits in each nibble are witten in reverse order, so the
| ef t rost displayed pixel in a nibble is represented by the
| east-significant bit of the nibble.

3.2 Term nol ogy and Abbrevi ati ons.
In the stack diagrans used throughout the remai nder of this

docunent, the followi ng synbols are used to represent the
various object types:

ob Any obj ect

id ... Identifier Object
lam.......... Tenporary ldentifier Object
ronptr ROM Poi nt er Obj ect

I ; P Bi nary I nteger Object
Y. Real bj ect
Wo........... Ext ended Real bject
C%........... Conpl ex hj ect
C®o.......... Ext ended Conpl ex Obj ect
arry Array Object

| nkarry Li nked Array Object

$ Character String Object
hxs Hex String bject

chr Character Object

ext Ext ernal bj ect

code Code nj ect

princode Primtive Code (bject

L Secondary Obj ect

{y - Li st Obj ect

symb ... Synbol i ¢ Obj ect

conp Any Conposite nject (list, secondary, synbolic)
rep ..o Directory (bject

tagged Tagged nhj ect

flag TRUE/ FALSE

(TRUE and FALSE above denote the object parts of built-in
ROM WORDs havi ng t hese nanmes. The addresses of these objects
(that is, their data stack representations) are interpreted
by RPL control structures as the appropriate truth val ue.
Both objects are primtive code objects which, when

execut ed, place thensel ves on the data stack).

In addition to the above notation, sone additional
term nol ogy is useful.

ELEMENT:

An ELEMENT of a conposite object is any object or object
pointer in the body of the conposite object.

Page 30

CORE:

of a character string: the core of a character string
object is the character data in
t he body.

of a hex string: the core of a hex string object is the
ni bbl e sequence in the body.

of a conposite: the core of a conposite object is the
el ement sequence in the body not
including the trailing object pointer
to sem.

LENGTH:

of a character string: the length of a character string
object is the nunber of characters
in the core.

of a hex string: the length of a hex string object is the
nunber of nibbles in the core.

of a conposite: the length of a conmposite object is the
nunber of elenments in the core

NULL:
character string: a null character string object is one
whose length is zero.

hex string: a null hex string object is one whose | ength
is zero.

conposite: a null conposite object is one whose | ength
is zero.

| NTERNAL :

an internal of a conposite object is any object in the
core of the conposite object or the pointee of any object
pointer in the core of the conposite object.

(A conposite object is often |loosely referred to as
containing a specific object type, for exanple "a list of
bi nary integers”; what is neant is that the core internals
are all of this object type).

Page 31

4. Binary Integers

Internal binary integers have a fixed size of 20 bits, and
are the nost often used type for counting, |oops, etc.
Binary integers offer advantages of size and speed.

NOTE: User level binary integers are inplenmented as hex
strings, so a user's object #247d is actually a hex
string, and should not be confused with a binary
i nt eger whose prol ogue i s DOBI NT.

4.1 Built-in Binary Integers

The RPLCOWP conpiler interprets a decimal nunber in a source
file as a directive to produce a binary integer object -
using a prologue and a body. Built-in binary integers can
be accessed with just an object pointer. For instance, " 43
" (no quotes) in the source file produces a binary object:

CON(5) =DOBI NT
CON(5) 43

The obj ect takes five bytes, but can be replaced by the word
"FORTYTHREE', which is a supported entry point which woul d
generate the foll ow ng code:

CON(5) =FORTYTHREE

One pitfall to be aware of in binary integer nam ng
conventions is the difference between the entries FORTYFI VE
and FOURFIVE. In the former case, the value is deciml 45
but the latter is decimal 69. Nanes |ike 2EXT and | DREAL,
where the val ues are not obvious, are used in conjunction
with the CK&Di spatch fam |y of argument checki ng commands.
The nanes for the CK&Dispatch famly are equated to the sane
pl aces as other bints. This has been done for readability.
For instance, the word SEVENTEEN, for decinmal 17, has the
nanes 2REAL and REALREAL equated to the same location. A
trailing "d" or "h" on a nane such as BINT_122d or BI NT80h

i ndi cates the base associated with the val ue.

Wbrds such as ONEONE, ZEROONE, etc. put nore than one binary

i nteger on the stack. These are indicated by a tiny stack
di agram i n parentheses, such as (--> #1 #1) for ONEONE.

Page 32

The supported entries for

binary integers are |listed bel ow

wi th the hex value in parentheses where needed:

2EXT (#EE) FORTYNI NE SYMREAL (#A1)
2GROB (#CC) FORTYONE SYMBYM (#AA)
2LI ST (#55) FORTYSEVEN TAGGEDANY (#D0)
2REAL (#11) FORTYSI X TEN

3REAL (#111) FORTYTHREE THI RTEEN
Attn# (#A03) FORTYTWO THI RTY

Bl NT253 FOUR THI RTYE! GHT
Bl NT255d FOURFI VE THI RTYFI VE
Bl NT40h FOURTEEN THI RTYFOUR
Bl NT80h FOURTHREE THI RTYNI NE
Bl NTCOh FOURTWO THI RTYONE

BI NT_115d FOURTY THI RTYSEVEN
BI NT_116d | DREAL (#61) THI RTYSI X
BI NT_122d | NTEGER337 THI RTYTHREE
BI NT_130d LI STOWP (#52) THI RTYTWD
BI NT_131d LI STLAM (#57) THREE

BI NT_65d LI STREAL (#51) TWELVE

BI NT_91d M NUSONE(#FFFFF) TWENTY

BI NT_96d NI NE TVENTYE! GHT
Connect i ng(#C0A) NI NETEEN TVENTYFI VE
El GHT ONE TVENTYFOUR
El GHTEEN ONEHUNDRED TVENTYNI NE
El GHTY ONEONE(- - > #1 #1) TWENTYONE
El GHTYONE REALEXT (#1E) TVENTYSEVEN
ELEVEN REALOB (#10) TVENTYSI X
EXT (#E) REALOBOB (#100) TWENTYTHREE

EXTOBOB (#E00)
EXTREAL (#E1)
EXTSYM (#EA)

REALREAL (#11) TVENTYTWOD
REALSYM (#1A) VWO
ROVPANY (#F0) XHI

FI FTEEN SEVEN XH -1 (#82)

FI FTY SEVENTEEN ZERO

FI FTYElI GHT SEVENTY ZERQZERO (--> #0 #0)

FI FTYFI VE SEVENTYFOUR ZERQOZEROONE (--> #0 #0 #1)
FI FTYFOUR SEVENTYNI NE ~ ZEROZEROTWD (--> #0 #0 #2)
FI FTYNI NE Sl X ZERQZERQZERO (--> #0 #0 #0)
FI FTYONE S| XTEEN char (#6F)

FI FTYSEVEN SI XTY id (#6)

FI FTYSI X S| XTYEI GHT idnt (#6)

FI FTYTHREE Sl XTYFOUR infreserr (#305)

FI FTYTWO SI XTYONE i ntrptderr (#a03)

Fl VE S| XTYTHREE list (#5)

FI VEFOUR SI XTYTWD of | oerr (#303)

FI VESI X SYMBUNI T (#9E) real (#1)

FI VETHREE SYMEXT (#AE) seco (#8)

FORTY SYM D (#A6) str (#3)

FORTYEI GHT SYMLAM (#A7) sym (#A)

FORTYFI VE SYMOB (#A0) symb (#9)

FORTYFOUR

Page 33

4.2 Binary Integer

Mani pul ati on

4.2.1 Arithnetic_Functions

#* (#2 #1 --> #2*#1)

#+ (#2 #1 --> #2+#1)

#+-1 (#2 #1 --> #2+#1-1)

#- (#2 #1 --> #2-#1)

#- #2/ (#2 #1 --> (#2-#1)/2)
#-+1 (#2 #1 --> (#2-#1)+1)
#/ (#2 #1 --> #remai nder #quotient)
#1+ (# -->#+1)

#1+' (# --> #+1 and quotes next runstream object
#1+DUP (# --> #+1 #+1)

#1- (#-->4#1)

#10* (#-->#10)

#10+ (# --> #+10)

#12+ (# --> #+12)

#2* (#-->#2)

#2+ (# -->#+2)

#2- (#-->#-2)

#2/ (# --> FLOOR(#/2))

#3+ (# -->#+3)

#3- (#-->#-3)

#4+ (# -->#+4)

#4- (#-->4#-4)

#5+ (# -->#+5)

#5- (#-->#-5)

#6* (# -->#6)

#6+ (# --> #+6)

#7+ (# -->#+7)

#8* (# -->#8)

#8+ (# -->#+8)

#9+ (# -->#+9)

#MAX (#2 #1 --> MAX(#2, #1))
#M N (#2 #1 --> M N(#2, #1))
2DUP#+ (#2 #1 --> #2 #1 #1+#2)
DROP#1- (#o0ob-->#-1)

DUP#1+ (# --># #+1)

DUP#1- (#-->#4#1)

DUP3PI CK#+ (#2 #1 --> #2 #1 #1+#2)
OVER#+ (#2 #1 --> #2 #1+#2)
OVER#- (#2 #1 --> #2 #1-#2)
ROT#+ (#2 ob #1 --> ob #1+#2)
ROT#+SWAP (#2 ob #1 --> #1+#2 ob)
ROT#- (#2 ob #1 --> ob #1-#2)
ROT#1+ (# ob ob' --> ob ob' #+1)
ROT+SWAP (#2 ob #1 --> #1+#2 ob)
SWAP#- (#2 #1 --> #1-#2)
SWAP#1+ (# ob -->o0b #+1)
SWAP#1+SWAP (# ob -->#+1 ob)
SWAP#1 - (# ob-->0b #1)
SWAP#1- SWAP (# ob -->#-1 o0b)
SWAPOVER¥#- (#2 #1 --> #1 #2-#1)

Page 34

4.2.2 Conversion_Functions

COERCE (%-->#) If %0 then # is O

| f %FFFFF then #=FFFFF
COERCE2 (%R % --> #2 #1) See COERCE
COERCEDUP (%--># #) See COERCE COERCESWAP (
ob %--> # ob) UNCOERCE (#--> %)
UNCOERCE%®%6 (# --> %%) UNCOERCE2 (#2 #1 --> W
%l)

Page 35

5. Character Constants

The followi ng words are useful for converting between
character objects and other object types:

CHR># (chr -->#)
#>CHR (# -->chr)
CHR>$ (chr --> %)

The foll owi ng character constants and strings are supported:

CHR # CHR * CHR + CHR, CHR - CHR.. CHR/ CHR O CHR 1 CHR 2
CHR 3 CHR 4 CHR5 CHR 6 CHR 7 CHR 8 CHR 9 CHR: CHR : CHR <

CHR=CHR>CHRACHRBCHRCCHR D CHR E CHR F CHR G CHR H
CHRI CHRJ CHRKCHRL CHR MCHR NCHR O CHR P CHR Q CHR R
CHRSCHRTCHRUCHRY CHR WCHR X CHR'Y CHR Z CHR a CHR b
CHRc CHRd CHRe CHRf CHRg CHR h CHRi CHRj CHR k CHR |
CHR mMCHR n CHR o CHRp CHR g CHRr CHR s CHRt CHR u CHR v
CHR w CHR x CHRy CHR z

CHR 00 (hex 0) CHR ... CHR Dbl Quote CHR -> CHR <<

CHR >> CHR Angle CHR Deriv CHR Integral CHR LeftPar
CHR Newline CHR Pi CHR RightPar CHR Sigma CHR Space
CHR UndScore CHR[CHR] CHR{ CHR} CHR <= CHR >=
CHR <>

$ R<< ($ "R 80\80" "R<angl e><angl e>")
$_R<Z ($ "R80Z" "R<angle>Z")
$ Xyz ($ "Xyz")
$_<<>> ($ "ABBB")
$() (8")
S[] (s)
$ "' (")
$_ ($"::")
$ LRPar ens (s"O)")
$_2DQ (")
$ ECHO ($ "ECHO)
$ EXIT (% "EXIT)
$_Undef i ned ($ "Undefined")
$ RAD ($ "RAD)
$_GRAD ($ "GRAD')
NEWL| NE$ ($ "\oa")
SPACE$ ($" ")

Page 36

6. Hex & Character Strings

6.1 Character Strings

The following words are avaliable for character string

mani pul ation:
&$

I append$

$>1 D
&$SWAP

1- #1- SUBS$
>H$

>TS$

ANDS$
APPEND_SPACE
Bl ank$
CARS

CDR$
CCERCES$22

DECOVPS$
DO>STR
DROPNULL$
DUP$>1 D
DUPLEN$
DUPNULL$?

EDI TDECOVP$
Jst GETTHEMESG
| D>$

LASTS$

$1 $2 --> $3)

Appends $2 to $1

$1 $2 --> $3)

Sanme as &3P, except that it will attenpt the concatenation
"in place," if there is not enough nenory for the new

string, and the target is in tenpob.
$nanme --> 1d)

Converts string object to nane object
ob $1 $2 --> $3 ob)

Appends $2 to $1, then swaps result with ob)
$#-->9%)

Wiere $' = chars 1 thru #-1 of $

$ chr --> %)

Prepends chr to $

$ chr --> $

Appends chr to $

$1 $2 --> $1 AND $2)

Bitwi se | ogical AND of two strings

$-->8%)
Appends space to $
#-->9%)

Creates a string of # spaces
$-->chr | $)
Returns 1st chr of $ or NULL$ if $ is nul

$-->8%)

$ is $ mnus first character. Returns NULL$ if $ is nul
$--> ¢

If $ longer than 22 chars., truncates to 21 chars &
appends "..."

ob --> %)

Deconpi | es object for stack display

ob --> %)

Internal version of ->STR

ob --> NULLS$)

Drops object, returns zero-length string
$nanme --> $nane |1d)

Dups, converts string object to name object
$ --> % #length)

Returns $ and its length

$-->8%flag)

Returns TRUE if $ is zero-length
ob --> %)

Deconpi |l e object for editing
#-->9%)

Fet ches nmessage from nessage table
ID --> $nane)

Converts nanme object to a string
$#-->9%)

Returns last # chrs of $

Page 37

LEN$

NEWL| NE$&$
NULLS$
NULL$?
NULL$SWAP
NULL$TEMP
OR$
OVERLEN$
PCS$

POS$REV

Prompt I dUt i
SEP$NL

SUB$
SUB$1#

SUB$SWAP
SWAP&S

TI MESTR

XOR$
a%$

a% 3,

pal par se

$ --> #length)
Returns length of $

$--> ¢

Appends "\0a" to $
__>$)

Returns enpty string
$-->flag)

Returns TRUE if $ is zero-length

ob -->$ ob)

Swaps enpty string into level 2

--> %)

Creates enpty string in TEMPOB

$1 $2 --> $3)

Bitwi se | ogical OR of two strings

$ ob -->3% ob #length)

Returns length of $ in level 2

$search $find #start --> #pos)

Returns #pos (#0 if not found) of $find
within $search starting at head of $search
$search $find #start --> #pos)

Returns #pos (#0 if not found) of $find
within $search starting at tail of $search
idob ->%)

Returns string in the form"id: ob"

$--> 82 $1)

Separate $ at new i ne character

$ #start #end --> $')

Returns substring of $

$ #pos --> #)

Returns bint with value of character

in $ at position #pos

ob $ #start #end --> $' ob)

Returns substring of $ and swaps with ob
$1 $2 --> "$2%$1")

Appends $1 to $2

Y%late % inme --> "WED 03/30/90 11:30: 15A")
Returns string tinme and date

(li ke user word TSTR)

$1 $2 --> $3)

Bitwi se | ogical XOR of two strings

%--> %)

Converts %to $ using current display node
%--> %)

Converts %to $ using current display node
Sane as a%$, but with no conmas

$ --> ob TRUE)

$ -->$ #pos $ FALSE)

Parse a string into an object and TRUE, or
returns position of error and FALSE

Page 38

6.2 Hex Strings

#>%
o>#
&HXS

2HXSLI ST?

HXS#HXS
HXS>#
HXS>$
HXS>%
HXS<HXS
HXS>HXS
HXS>=HXS
HXS<=HXS
LENHXS
NULLHXS

SUBHXS

hxs --> %)

Converts hxs to real

% --> hxs)

Converts real to hxs

hxsl hxs2 --> hxs3)

Appends hxs2 to hxsl

{ hxsl hxs2 } --> #1 #2)

Converts list of two hxs into two bints
Cenerates Bad Argument Val ue error for
i nvalid input

hxsl hxs2 --> %l ag)

Returns %4 if hxsl <> hxs2, otherw se %

hxs --> #)
Converts |lower 20 bits of hxs into a bint
hxs --> $)

Does hxs>$, then appends base character
hxs --> %)

Converts hex string to real nunber
hxsl hxs2 --> %l ag)

Returns %4 if hxsl<hxs2, otherw se %
hxsl hxs2 --> %l ag)

Returns %4 if hxsl>hxs2, otherw se %0
hxsl hxs2 --> %l ag)

Returns %4 if hxsl>=hxs2, otherw se %
hxsl hxs2 --> %l ag)

Returns 9% if hxsl<=hxs2, otherw se %
hxs --> #length)

Returns # of nibbles in hxs

--> hxs)

Returns zero-length hex string

hxs #m #n --> hxs')

Returns substring

User RPL binary integers are actually hex strings. The
foll owi ng words assume 64-bit or shorter hex strings, and
return results according to the current wordsize:

bit/

Di vi des hxsl by hxs2 bit %t/

bi t #%
hxs by %

% hxs --> hxs'
returns hxs bit#%

bit+

(
Adds hxsl to hxs2

bi t #%
hxs to %

% hxs --> hxs'
returns hxs bit#%

hxsl hxs2 --> hxs3)
(% hxs --> hxs')
Di vi des % by hxs, returns hxs

(hxs %--> hxs') Di vi des
returns hxs bit*

(hxsl hxs2 --> hxs3)
Mul tiplies hxsl by hxs2 bit % (
Mul tiplies % by hxs,
(hxs %--> hxs')
Multiplies hxs by % returns hxs
hxsl hxs2 --> hxs3)

bi t %+ (% hxs --> hxs')

Adds % to hxs, returns hxs

hxs % --> hxs') Adds
hxs bit- (hxsl hxs2 --> hxs3)

Subtracts hxs2 from hxsl bit %-
Suptracts % from hxs,
(hxs %--> hxs')
Suptracts hxs from% returns hxs

Page 39

bi t AND (hxsl hxs2 --> hxs3)

Bitwi se | ogi cal AND bit ASR (hxs --> hxs')
Arithnetic shift right one bit
bi t OR (hxsl hxs2 --> hxs3)
Bi twi se | ogical OR bitNOT (hxsl hxs2 --> hxs3)
Bitwi se | ogical NOT bitRL (bhxs
--> hxs') Circular left shift by 1 bit
bi t RLB (hxs --> hxs') Circul ar
left shift by 1 byte bitRR (hxs --> hxs')
Circular right shift by 1 bit
bi t RRB (hxs --> hxs') Circul ar
right shift by 1 byte bitSL (hxs --> hxs')
Shift left by 1 bit bitSLB (hxs
--> hxs') Shift left by 1 byte
bi t SR (hxs --> hxs') Shi ft
right by 1 bit bitSRB (hxs --> hxs')
Shift right by 1 byte bitXOR (
hxsl hxs2 --> hxs3) Bi twi se | ogi cal XOR

Wor dsi ze control

WORDSI ZE (-->#) Ret ur ns user
bi nary integer wordsize dostws (#-->)

Stores binary wordsize hxs>$ (
hxs --> $) Converts hex string to chr
string using the current display node and
wor dsi ze

Page 40

7. Real Nunbers

Real nunbers are witten with % and extended real nunbers
are witten with %o

7.1 Built-in Reals

The follow ng real and extended real nunbers are built in:

%0 1 A % 8 %41 %1 %

%0 4 %6 % 9 %42 "R2 %

%0 5 %60 % MAXREAL %43 %3 %

%0 0w % M NREAL %44 4 %8

o % 2 % 1 %45 %25 %VAXREAL
%040 % 3 %5 %46 %6 %V NREAL
%842 % 4 % o7 o7 o0

%R % 5 %l %4.80 %3 %

%R2PI % 6 %40 %R %360 % 1

%03 % 7 %4.00 %0 %6

7.2 Real Number Functions

In the stack diagrans below, %4 and 9% refer to two
different real nunmbers, NOT the real nunbers one and two.

2%} (%4 %R --> %38)
Multiplies two extended reals
%6 ROT (obl ob2 %4 %R --> ob2 %@ obl)

Multiplies two extended reals,
t hen does a ROT

%86 SWAP (ob ®d WL --> %B ob)
Multiplies two extended reals,
t hen does a SWAP

%86 UNROT (obl ob2 WA %R --> 9B obl ob2)
Multiplies two extended reals,
t hen does an UNROT

%W (%A %R --> BB)

Adds two extended reals
%6 (%4 %R --> BB)

Subt racti on
YABS (Wo--> %)

Absol ute val ue
YACCSRAD (Wo--> %)

Ar c-cosi ne using radi ans
YANG_E (% By --> %Wangle)

Angl e using current angle node from %« YWy
YANG_EDEG (%% Wy --> %Wangle)

Angl e using degrees from %« %Wy

Page 41

9%ANG-ERAD

9%ASI NRAD
9YECHS
9ECOS
YECOSDEG
9EC0SH
YECOSRAD
WEXP
%94-LOOR
%WE>HVE
%94 NT
%A N

%94 NP1
YRAVAX
%WEFP>R
WP
%Wl N
%8l NDEG
%Sl NH
WSOQRT
9%8d ANRAD
%6

%o+
%+-SWAP
%

% +

% -

WK Wy --> %Wangle)

Angl e using radi ans from %« Wy
Wo--> B/)

Arc-si ne using radi ans

Wo--> B/)

Change sign

Wo--> B/)

Cosi ne

Wo--> B/)

Cosi ne usi ng degrees

Wo--> B/)

Hyper bol i ¢ cosi ne

Wo--> B/)

Cosi ne using radi ans

Wo--> B/)

enx

Wo--> B/)

Greatest integer <= x

Wo--> B/)

Deci mal hours to hh. nss
Wo--> B/)

I nt eger part

Wo--> B/)

I n(x)

Wo--> B/)

I n(x+1)

Wd R --> %3)

Returns greater of two %6

%4 adi us Wangle --> %W Wy)
Pol ar to rectangul ar conversion
WK Wy --> %% adi us Wangl e)
Rect angul ar to pol ar conversi on

Wo--> B/)

Si ne

Who--> B/)

Si ne usi ng degrees
Wo--> B/)
Hyper bol i c sine
Wo--> B/)
Squar e r oot

Wo--> B/)

Tangent using radi ans
wWd R --> %3)
Exponent i al

W R --> 9)

Addi tion

ob %4 % --> %3 ob)
Addi tion, then SWAP
W R --> 9)

Subt racti on

% --> %1)
Adds one
%--> %1)

Subtracts one

Page 42

%# (%--> hxs)
Converts real to binary integer

%% (%--> %)

Converts real to extended real
%>90% (% R --> %8)

Converts 2 %to %4 then subtracts
%984 (% --> %)

Converts %to %4 then does 1/x
%> YANGLE (% % --> %Wangle)

Angle in current angle node
% 9BQRT (%--> %)

Converts %to %4 then sqgrt(x)
%> YEBSWAP (ob %--> %%bob)

Converts %to %4 then SWAP
% C% (%eal %mag --> CH)

Real to conpl ex conversion
% HVB (%--> %h. mss)

Deci mal hours to hh. nss
Y%ABS (%-->%)

Absol ute val ue
Y%ABSCOERCE (%-->#)

Absol ute val ue, convert to bint
YACOS (%-->9%)

Arc cosine
Y%ACOSH (%-->%)

Hyper bol i c arc cosine
YALOG (%-->%)

107x
YANGLE (% % --> %ngle)

Angl e using current angle node from % %
%ASI N (%-->%)

Arc sine
%ASI NH (%-->%)

Hyperbolic arc sine
Y%ATAN (%-->9%)

Arc tangent
YATANH (%-->%)

Hyper bol i ¢ arc tangent
%CEI L (%-->9%)

Next greatest integer
%€CH (%W R --> 98)

Per cent change
YECHS (%-->%)

Change sign
%€COVB (%n % -> %COVB(mn))

Conbi nations of mitens taken n at a tine
%C0S (%-->9%)

Cosi ne
%COSH (%-->9%)

Hyper bol i ¢ cosi ne
%>R (%-->9%)

Degrees to radi ans
YEXP (%-->9%)

enx
%EXPML (% -->%)

erx-1

Page 43

YEXPONENT
%-ACT
%-LOOR
%P

%HVE+
%VG-
%VE>

% P

% P>#

%N

% NP1
%.0G
9%VANT1 SSA
9VAX
%vAXor der
M N

9MOD
YINFACT
YINRCOT
YEOF

%PERM

%POL>UREC
%=>D
%RAN

Y%RANDOM ZE

YREC>%POL

YSGN

%8I N

%-->9%)

Ret ur ns exponent

%-->9%)

Factori al

%-->%)

Greatest integer <= x

%-->9%)

Fractional part

W R --> 9)

HH. MVBS addi ti on

W R --> 9)

HH. MVBS subtraction

%-->%)

Convert hh.nmss to deci mal hours
%-->9%)

I nt eger part

%-->#)

| P(ABS(x) converted to binary integer
%-->9%)

I n(x)

%-->%)

I n(x+1)

%-->9%)

Conmmon | og

%-->%)

Returns manti ssa

W R --> %)

Returns larger of two reals

%W 9% --> %arger Ysmaller)

O ders two nunbers

W R --> %)

Returns smaller of two reals

W R --> 9)

Returns %4 MOD %2

%-->%)

Factori al

W R --> 9)

Nt h root

W R --> 9)

Returns percantage of % that is %
%m %, - - > 9%PERM %m Y%%))

Returns permutations of %nitens
taken % at a tine

W™ % --> % adius %angle)

Rect angul ar to pol ar conversi on
% adi ans --> %legrees)

Radi ans to degrees

--> 9% andom)

Random nunber

Y%seed -->)

Updat es random nunber seed, uses the
systemclock if %0

% adi us %angle --> %W %)

Pol ar to rectangul ar conversion
%-->9%)

Sign: -1, 0 or 1 returned dependi ng
on the sign of the argunent
%-->9%)

Page 44

Si ne

%51 NH (%-->9%)
Hyper bol i c sine
YSPH>YREC (% %h %h --> % %W %)
Spherical to rectangul ar conversion
YSQRT (%-->%)
Squar e root
o (%W R --> 98)
Percent total
% AN (%-->%)
Tangent
% ANH (%-->%)
Hyper bol i ¢ tangent
% (%W R --> 98)
Exponent i al
2985 % (%4 %R --> % R)
Extended real to real conversion
29%>%% (% R --> %4 %BR)
Real to extended real conversion
C¥%% (C%--> %Weal % mag)
Conpl ex to real conversion
DDAYS (%latel %ate2 --> 9%diff)
Days between dates in DW format
DORANDOM ZE (%-->)
Updat es random nunber seed
RNDXY (Y%unber %l aces --> %munber’)
Rounds %munber to %l aces
TRCXY (Y%unber %l aces --> %munber’)
Truncat es %unber to %l aces
SVWAPY>C% (%rmag %Weal --> Cw)

Real to conpl ex conversion

Page 45

8. Conpl ex Nunbers

Conpl ex nunbers are represented by C% extended conpl ex
nunbers by C¥b

8.1 Built-in Conplex Nunbers

(o) (0, 0)
o (1,0)
% 1 (-1,0)
oA (904, 980)

8.2 Conversion Wrds

% C% (%eal %mag --> C%)
%6 C%0 (Bbeal Womg --> CB)
%6 C% (Bbeal Woimag --> CH)
C¥%% (C%--> %Weal % mag)
CYWe%% (C®Bo--> WBreal 96 mag)
CWeC% (CWo--> C%)

CY% %0 (C%--> Wseal 96 mag)
CY%%BWAP (C%--> Wmg YWeeal)
Cl (Co--> %nmg)

CRe% (C%--> %eal)

8.3 Conpl ex Functi ons

cA/ (C%-->C%)
I nver se
C¥ABS (C%--> %)
Ret urns SQRT(x"2+y”~2) from (Xx,Yy)
CUACOS (C%-->C%)
Arc cosine
CYALOG (C%-->C%)
Common anti | og
CYARG (C%-->9%
Returns ANGLE(x,y) from (x,y)
C¥ASI N (C%-->C%)
Arc sine
CYATAN (C%-->C%)
Arc tangent
cuenC (A COR --> OB)
Power
CUCHS (C%-->C%)
Change sign
CWECHS (CWb--> CBH)
Change sign
CYCONJ (C%-->C%)
Conj ugat e
CWECONJ (CWb--> CBH)
Conj ugat e

Page 46

CUCCS
CUCOSH
CYEXP
C%.N
C%.0G
CYSGN
sl N
Cvsl NH
CYSQRT
CUTAN

CY%r ANH

C%--> C%)

Cosi ne

C%-->C%)
Hyper bol i ¢ cosi ne
Cw-->C%)

ez

C%-->C%)

Nat ural | ogarithm
C%-->C%)
Common | ogarithm
C%-->C%)
Returns (x/ SQRT(x"2+y"2),y/ SQRT(x"2+y"2)
C%-->C%)

Si ne

C%-->C%)

Hyper bol i c sine
C%-->C%)
Squar e root
C%-->C%)
Tangent

C%w-->C%)

Hyper bol i ¢ tangent

Page 47

9. Arrays

The notation [array] represents a real or conplex array.
[arryYd and [arryCY% represent real and conplex arrays,
respectively. {dins} nmeans a list of array dinensions,
whi ch may be either { #cols } or { #rows #cols }.

Unl ess ot herwi se indicated, the follow ng words do NOT check
for out-of-range conditions (i.e. elenents specified that
are not wthin the range of the current array).
ARSI ZE ([array] --> #elenents)

[array] --> {dins})

(
GETATELN (# [array] --> ob TRUE)

(# [array] --> FALSE) (no such el enent)
MAKEARRY ({dinms} ob --> [array])

Creates an unlinked array having the same
el ement type as ob. Al elenents are
initialized to ob.
MATCON ([arryXd %--> [arry%]')
([arryCh C%--> [arryCh')
Sets all elenents in array to %or C%

MATREDI M ([array] {dinms} --> [array]')
MATTRN ([array] --> [array]')
VDI VB ([1-D array] --> #m FALSE)

([2-D array] --> #m #n TRUE)
MDI MSDROP ([2-D array] --> #m#n)

Don't use NMDI MSDROP on a vector!

OVERARSI ZE ([array] ob --> [array] ob #elenments)
PULLREALEL ([arryd # -->[arryXR %)
PULLCMPEL ([arryCh # --> [arryChH C%)
PUTEL ([arryAd %# -->[arryR')

([arryChH C%# --> [arryCh)
PUTREAL EL ([arryAd %# -->[arryR')
PUTCMPEL ([arryC C%# --> [arryCh"')

Page 48

10. Conposite bjects

The words described in this chapter are used for

mani pul ati ng conposite objects - mainly lists and
secondaries. In the notation below, the term"conp" refers
to either any conposite object. The term"#n" refers to the
nunber of objects in a conposite object, and the term"#i"
refers to the index of an object within a conposite. The
term"flag" refers to TRUE or FALSE.

&COVP (comp comp' --> conmp'') conp is concatenated to conp'
2h>Seco (obl ob2 -->:: obl ob2 ;)
N (obn ... obl #n --> :: obn ... obl ;)
: - NEVAL (obn ... obl #n --> ?)
Does :: N, then eval uates secondary

>TCOVP (comp ob --> comp') ob is added to the tail of conp
CARCOWP (conp --> ob)

(

conp --> conp)
Returns first object in the core of the

conposite. Returns an null conp if the
supplied conposite is null.
CDRCOWP (conp --> conp')
(conp --> conp)
Returns the core of the conposite mnus the
first object. Returns null conp if if the
supplied conposite is null.

DUPI NCOVP (comp --> conp obn ... obl #n)

DUPLENCOWP (conp --> conp #n)

DUPNUL LCOVP? (comp -->conp flag) TRUEif conmp is null.
DUPNULL{}? ({list} -->{list} flag) TRUEif {list} is null.
EQUAL POSCOVP (conp ob --> #pos | #0)

Returns the index of the first object in conp

mat chi ng (EQUAL) ob (see NTHOF al so)
Enbedded? (obl ob2 --> flag)

Returns TRUE if ob2 is enbedded in, or the

same as, obl; otherw se returns FALSE.

I NCOVPDROP (comp -->o0bn ... obl)

| NNERCOWP (comp --> obn ... obl #n)

| NNERDUP (comp --> obn ... obl #n #n)

LENCOWP (conp --> #n)

NEXTCOVPOB (comp #offset --> conp #offset' ob TRUE)

(conp #offset --> conp FALSE)

#offset is the nibble offset fromthe start
of the list to the Nth object in the list.
Returns a new #offset and the next object if
the next object is not SEM, otherw se
returns the Iist and FALSE. Use #5 at the
start of the list.

NTHCOVDDUP (conp #i --> ob ob)

NTHCOVPDROP (conp #i --> ob)

NTHEL COVP (conp #i --> ob TRUE)

(conp #i --> FALSE)

Returns FALSE if #i is out of range

NTHOF (ob conp --> #i | #0) Same as SWAP EQUALPCSCOWP.

NULL: : (-->:: ;) (Returns null secondary)

NULL{} (-->{ }) (Returns null list)

Page 49

ONE{} N
h>Seco
PCSCOVWP

ob -->{ ob })

ob -->:: ob ;

conp ob pred --> #i | #0)

If the specified object "matches" an el ement
of the specified conposite, where "match" is
defined as the specified predicate returning
TRUE when applied to an el enent of the conp
and the object, then POSCOW returns the |eft-
to- right index of the element within the
conposite, or zero. For instance, to find the
first real less than 5 in a list of reals:

—~ N~

{list} 5' % POSCOW ;

PUTLI ST (ob # {list} -->{list}') (Assunes O<#i <=#n)
SUBCOWP (comp #m #n --> conp') (Returns subconposite)
| F #m > #n THEN conmp' is nul
| F #n70 THEN #mis set to 1
| F #n=0 THEN #n is set to 1
| F #m > LEN(conp) THEN conmp' is nul
I F #n > LEN(conp) THEN #n is set to LEN(conp)
conp obj --> obj obn ... obl #n)
obl ob2 0b3 --> { obl ob2 0ob3 })
obl ob2 -->{ obl ob2 })
obn ... obl #n --> {list})
{list} ob --> {list}')
Adds ob to the list if ob is not found within
the |ist
mat chob? (ob conp --> ob TRUE)

(ob conp --> FALSE)

Determines if ob is equal (EQUAL) to any el enent of conp

SWAPI NCOVP
THREE{} N
TWO } N
{}N

apndvar | st

NN AN AN

Page 50

11. Tagged Objects

The following words are avail able for mani pul ati ng tagged
objects. Renenber that an object can have nultiple tags.

%W TAG (ob %--> tagged)
Tags ob with %
>TAG (ob $ --> tagged)
Tags ob with $
| D>TAG (obid/lam--> tagged)
Tags ob with id
STRI PTAGS (tagged --> ob)
Renoves all tags
STRI PTAGS| 2 (tagged ob' --> ob ob')
Strips tags fromlevel 2 object
TAGOBS (ob $ --> tagged)
(obl ... obn { $1 ... $n}
--> taggedl ... taggedn)

Tags one object, or several objects
if alist of tags is in level 1

USER$>TAG (ob $ --> tagged)
Tags ob with $ (up to 255 chrs valid)

Page 51

12. Unit Objects

VWhen unit objects are conpared for di nensional consistency,
a hex string, called a "quantity string", may be extracted
using the word U>NCQ This quantity string contains

i nformation about which units are contained, and can be
directly conpared with another quantity string. |If the
gquantity strings match, the two unit objects can be said to
be di nensionally consistent. U>NCQ al so returns extended
real nunbers consisting of the nunber and a conversion
factor to base units.

U>NCQ (unit --> n%hb cf W6 ghxs)
Ret urns nunber, conversion factor
and hex quantity string

UME? (unitl unit2 --> 9%l ag)
Returns 94 if two unit obs are equa
UMVE? (unitl unit2 --> 9%l ag)
Returns %4 if unitl <> unit2
UVK? (unitl unit2 --> 9%l ag)
Returns %4 if unitl < unit2
Uv>-? (unitl unit2 --> 9%l ag)
Returns %4 if unitl > unit2
Uvk=? (unitl unit2 --> 9%l ag)
Returns %4 if unitl <= unit2
uw-=? (unitl unit2 --> 9%l ag)
Returns %4 if unitl >= unit2
uvsu (%unit -->unit')
Repl aces the nunber part of a unit object
UWo (unit Ypercentage --> unit')
Returns a percentage of a unit object
UMACH (unitl unit2 --> %)
Returns percent difference
uwar (unitl unit2 --> %)
Returns percentage fraction
UMt (unitl unit2 --> unit3)
Addi tion
um (unitl unit2 -->unit3)
Subt racti on
UMF (unitl unit2 -->unit3)
Ml tiply
um (unitl unit2 -->unit3)
Di vi de
uvt (unitl unit2 -->unit3)
Power
um/ (unit -->wunit')
I nver se
UVABS (unit -->wunit')
Absol ute val ue
UMCHS (unit -->wunit')
Change sign
UMCONV (unitl unit2 -->unitl)
Converts unitl to units of unit2
UMCOS (unit -->wunit')
Cosi ne
UMVAX (unitl unit2 -->unit?)

Page 52

UMM N
UVBI
UVSI N
UVBQ
UVBQRT
UMTAN

ums>

UMXROOT

UNI T>$

Returns larger of unitl and unit?2
unitl unit2 --> unit?)

Returns smaller of unitl and unit2
unit -->unit')

Convert to Sl base units

unit -->unit')

Si ne

unit -->unit')

Squar e

unit -->unit')

Squar e root

unit -->unit')

Tangent

unit --> %unit')

Returns nunber and normalized unit parts
of a unit object

unitl unit2 --> unit3)

uni t 171/ unit2

unit --> %)

Deconpiles a unit object with tics

Page 53

13. Tenporary Variabl es and Tenporary Environnents

One of the features inplenented in RPL is the capability of
creating tenmporary variables (aka "local variables", "lanbda
vari abl es") whose nanes are given by the programer, and
whi ch can be destroyed easily when they are no | onger
needed. These tenporary vari abl es serve a nunber of

i mportant purposes. First of all, they can be used to

el imnate stack mani pul ations within a program which nmakes
the task of keeping track of the stack nmuch easier, and
makes debuggi ng easier. In addition, they are essential for
the inpl enentati on of progranms which take an indefinite
nunber of paraneters and want to save one or nore of those
par anet ers.

Tenporary variables are referenced by tenporary identifier
objects ("local names"), and the binding between a tenporary
identifier object and its value is supported by structures
in menory called tenporary environnments. (This is the RPL
anal ogue of LISP "l anbda bi nding").

Tenporary environments are stacked in chronol ogi cal order
This allows the progranmer the opportunity to create his own
"private" tenporary variables, without the possibility of
interfering with those created by others. Wen a tenporary
identifier object is executed, a search is made through the
stack of tenporary environnments, starting in the nost
recently created and wor ki ng back through previous
environnents if necessary. When a match i s nade between the
tenporary identifier object being executed and a tenporary
identifier object in one of the tenporary environnents, the
object bound to that identifier is pushed onto the data
stack. Executing an unbound tenporary identifier object is
an error condition.

The processes of creating a tenporary environnent and
assigning initial values to its tenmporary variables are
acconpl i shed sinultaneously with the provided object BIND
BI ND expects a list of tenporary identifier objects on the
top of the data stack and at |east as many objects
(excluding the list itself) on the stack as there are
tenporary identifier objects in the list. BINDwill then
create a tenporary environment and bi nd each tenporary
identifier object in the list with an object on the stack
renovi ng that object fromthe stack

Subsequent execution of any of the tenporary identifier
objects inthe list will return the object bound to it. The
val ue bound to a tenporary identifier object can be changed
using STO in exactly the sanme manner as a value "bound" to
an identifier object (global nane).

The dissolution of a tenporary environnment is acconplished
with the provided object ABND (short for "abanbon"). ABND
renoves the top-nost tenporary environnent fromthe stack of
tenmporary environnments. Individual tenporary variabl es
cannot be renoved froma tenporary environnent; the
tenmporary environnment as a whol e nmust be abandoned.

Page 54

Note that the RPL conpiler does not check to see if there is
an ABND to match each BIND. You can include the two within
a single program or put themin separate prograns as you
like with no restrictions other than the requirenments of
good structured progranm ng practice. This also neans that
you must renmenber to include the ABND at some point,

ot herwi se you may | eave unnecessary environnents around
after a program has conpl eted execution. (In user RPL, you
do not have such freedom The structure word -> has BIND
built into it, and the command |ine parser demands t hat
there be a matching >> or ' that includes ABND.)

13.1 Structure of the Tenporary Environment Area

The structure of the tenporary environment area i s shown
bel ow.

| Link Field [----- + (The first
--------------------------------- | | t enpor ary
| First Tenporary Environnent | | envi r onnment
---------------------------------- | is that nost
| recently
-------------------------- | creat ed)
S | Link Field | <----+
| e |
| | Second Tenporary Environment
| __________________________________
R > | Link Field [----- +
--------------------------------- | |
Last Tenporary Environnment | |
__________________________________ |
|
_________________________ |
0 <---- 4

(hi gh menory)

Page 55

Each tenporary environnment consists of a protection word (a
bi nary integer object body) which is used in error handling,
foll owed by a sequence of one or nore pairs of object

poi nters. The first object pointer in each pair is the
address of a tenporary identifier object and the second
object pointer in each pair is the address of the object
bound to that tenporary identifier object. Al of the object
pointers in a tenmporary environnent are updatable. The
structure of each tenporary environnent within the tenporary
environnent area is shown bel ow

--- (1 onwer addresses)

| -> Object Bound to Tenporary ldentifier Cbject 2

| -> Object Bound to Tenporary ldentifier Object N
--- (hi gher addresses)

Page 56

13.2 Named vs. Unnaned Tenporary Vari abl es

Tenporary variables are normally naned by the corresponding
tenmporary identifier in the list used by BIND. The names in
the list are used in the sane order as the bound objects
appear on the stack--the last identifier in the |ist
corresponds to the object in level 1, the next-to-I|ast
identifier corresponds to the object in level 2, and so on.
In the follow ng exanple, the binary integer ONE i s bound
into Varl, and TWD is bound into Var2:

ONE TWO
" LAM Var 1
" LAM Var 2
Bl ND (Binds ONE into tenporary variable Varl,
TWD into variable Var2)
LAi\/IVarl (Recalls ONE fromVarl)
LAi\/IVarZ (Recalls TWD from Var?2)
LAM Varl STO (Stores new object in Varl)
ABND (Abandons tenp env.)

Tenporary identifiers may contain any text characters,

except that you should not start the names with ' or # as
such names are reserved for the built-in ROM progranms. For
simlar reasons, it is reconmended that you use nanes that
can not conflict with user-generated nanmes; an easy way to
insure this is to include an "illegal" character such as one
of the object delimters in your nanes.

Page 57

and

If there is NO CHANCE t hat another tenporary environnent
will be created above the environment you are about to
create, null names may be used to save nmenory. There are a
nunber of utility words that allow you to access | ocal
variables in the topnost environnent by position nunber,
which is faster than the ordinary name resolution. For
exanpl e, the exanpl e above would ook like this:

"ONE TVO

{ NULLLAM NULLLAM }

Bl ND (Binds ONE and TWD i nto nul | naned tenporary
vari abl es)

QCETLAM (Recalls ONE fromfirst variable)

iCETLAM (Recalls TWD from |l ast variable)

2PUTLAM (Stores new object in first variable)

ABND (Abandons tenp environnent.)

The nunbering starts with the last tenporary variable (i.e.
in the same order as the stack | evel nunber).

Page 58

t he

13.3 Provided Wrds for Tenporary Vari abl es

The following words are provided for working with tenporary
variables. The term™"lanob" is used in this case to
i ndi cate an object recalled froma ternporary vari abl e.

1ABNDSWAP (ob --> lanpb ob)

Does :: 1GETLAM ABND SWAP ;
1GETABND (-->lanob)

Does :: 1GETLAM ABND ;
1GETLAM
(-->o0b)

22CGETLAM Returns contents of Nth [am

1GETSWAP ob --> lamob ob)
Does :: 1GETLAM SWAP ;

1LAMBI ND ob -->)

Does :: 1INULLLAM} BIND ;

INULLLAM } --> { NULLLAM })

Returns list with one null |am
1PUTLAM
C ob -->)

22PUTLAM Stores ob into Nth [am

2CETEVAL -->7?)
Recal | s & evaluates ob in 2nd | am

@AM id--> ob TRUE)
id--> FALSE)

Recal I s | am by nane, returns ob and
TRUE if id exists; FALSE otherw se
ABND -->)
Abandons topnost tenp var env.
Bl ND ob ... {id... } -->)
Creates new tenp var env.

CACHE obn ... obl nlam-->) Saves away n objects plus the count
nin a tenporary environment, each object being bound to
same identifier lam The last pair has the count.)

DUMP NULLLAM --> obl..obn n) DUW is essentially the inverse of
CACHE, BUT: it ONLY works with NULLLAM as the cached nane,
and it ALWAYS does a garbage collect.

DUP1LAMBI ND ob --> ob)

Does DUP, then 1LAMBI ND

DUP4APUTLAM ob --> ob)

Does DUP, then 4PUTLAM

DUPTEMPENV -->)

Dupl i cates topnost tenporary env.,
clearing the protection word.

GETLAM #n --> ob)

Returns object in #nth tenmp var

NULLLAM --> NULLLAM)

Nul I tenporary variabl e nanme

PUTLAM ob #n -->)

Stores ob in #nth tenp var

STO obid-->)

Stores ob in naned gl obal /tenp var

STOLAM obid-->)

Stores ob in naned tenmp var

Page 59

13.4 Codi ng Suggesti ons

The DEFINE feature of the RPL conpiler can be used to
conbine the legibility of naned variables with the speed and
efficiency of null-nanmed variables. For exanple:

DEFI NE Rcl Code 1GETLAM
DEFI NE St oCode 1PUTLAM
DEFI NE Rcl Nane 2GETLAM
DEFI NE St oNanme 2PUTLAM

{ NULLLAM NULLLAM }
Bl ND (Binds two objects into null naned
tenp variables 1 and 2)

h&iCode (Recalls contents of last variable)
h&iNane (Recalls contents of first variable)
éibCode (Stores object in first variable)
AEND (Abandons tenp environnent.)

If a large nunber of tenporary variables are to be used
wi t hout nanes, here is a code-saving tip:

Repl ace:

NULLLAM NULLLAM NULLLAM NULLLAM
NULLLAM NULLLAM NULLLAM NULLLAM
NULLLAM NULLLAM NULLLAM NULLLAM
NULLLAM NULLLAM NULLLAM NULLLAM
NULLLAM NULLLAM NULLLAM NULLLAM
NULLLAM NULLLAM NULLLAM NULLLAM

} BIND

NULLLAM TWENTYFOUR NDUPN
{}N BIND

The first method takes 67.5 bytes, whereas the latter nethod
takes 12.5 bytes, so there's a savings of 55 bytes!

You can al so use TVENTYFOUR ' NULLLAM CACHE, which is
shorter yet and does not require building the list of nul
identifiers in tempob. Note, however, that CACHE adds an
extra tenporary variable (to hold the count), so all of the
variabl e position nunbers differ by one fromthe previous
nmet hods.

Page 60

14. Checking Argunents

Any program obj ect which can be executed directly by a user
shoul d insure that the correct nunmber and types of argunents
are present to prevent problens. |If the object is
ultimately to be a library command, then it should foll ow

t he conmand structure convention (see section XxX):

CKO ... ; for O argunent commands, or

CK<n>&Di spatch typel actionl
type2 action2

typen actionn

for <n> argunment conmands, where typei is a type
code and

actioni is the correspondi ng di spatchee for that
type conbination, or

: CKN ... ; for commands that take an nunber of
argunents specified
by a real nunber in level 1 (like PICK or ->LIST).

CK<n>&Di spatch is actually a conbinati on of CK<n> and

CK&DI SPATCH1. There are a few built-in comands (e.g. TYPE)
that use the two words instead of the conbined form but al
al gebrai ¢ functions nust use CK<n>&Di spatch since these
words al so serve to identify the argunent count used by a
functi on.

If an object is not intended as a |library command, then it
shoul d have the follow ng structure:

CKONOLASTWD ... ; for O argunent prograns, or

CK<n>NOLASTWD CK<n>&Dl SPATCHL typel actionl
type2 action2

typen.éétionn
for <n> argunent prograns, or
CKNNOLASTWD ... ; for prograns that take

argunents as specified
in level 1.

Page 61

14.1 Nunber of Argunents

The following words verify that fromO0-5 argunents are on
the stack, and issue the "Too Few Arguments" error

ot herw se.

CKO, CKONOLASTWD No argunents required

CK1, CKLINOLASTWD One argunent required

CK2, CK2NOLASTWD Two argunents required

CK3, CK3NOLASTWD Three argunents required

CK4, CKANOLASTWD Four argunents required

CK5, CK5NOLASTWD Five argunments required

Each word CK<n>... "marks" the stack bel ow the <n>th argunent, and

if argunent recovery is in effect, saves a copy of the <n> argunments in the
| ast argunment save area. |If an error

occurs that is handled by the outer | oop error handler, then the stack

is cleared to the marked level (this renobves any stray objects that

were not put there by the user). |If the argunent recovery systemis active,
then the saved argunents are restored to the stack

Any CK<n> al so records the conmand in which it is executed, again for the
sake of the outer loop error handl er, which uses the command nane as

part of the error nessage display. A CK<n> should only be used in
l'ibrary conmands, and nust be the first object in the comand program
CK<n>NOLASTWD does not record the command, and may be used at any point.
However, it generally not a good idea to execute these words except

* at the beginning of a user-executed object, or
* imredi ately after the execution of any user procedure.

User procedures should only be executed when the stack contains only user
obj ects; the CK<n>NOLASTWD (usual |y CKONOLASTWD)

is executed imedi ately after the user procedure

to update the stack save mark to protect the stack results of the procedure.
This is usually done in conjunction with OLASTOADOB!, which clears

t he conmand save done by the | ast CK<n> executed within the user

procedure, so that that command is not identified as the culprit for

any subsequent errors. Useful words for these purposes are

At User St ack which is :: CKONOLASTWD OLASTONDCB! ;
CK1NoBl ane which is :: OLASTOADOB! CKLINOLASTWD ;

For objects that take a stack specified nunber of argunents, the anal ogs
to CK<n> and CK<n>NOLASTWD are CKN and CKNNOLASTWD. Both words check

for a real number in level 1, then check if there are that many additiona
objects on the stack. The stack is marked at level 2, and only the

real nunber is restore by LAST ARG

Page 62

14.2 Dispatching on Argunent Type

The words CK&DI SPATCH1 and CK&DI SPATCHO provi de a di spatch-
by-type mechani sm (the CK<n>&Di spatch words include the sanme
mechani sm so the foll owi ng di scussion applies to them as
wel I'), that provides straightforward branching according to
the object types of up to five argunents at a tine. Each
word is followed by an indefinite nunber of pairs of object.
Each pair consists of a binary integer or object pointer to
a binary integer, followed by any object or object pointer
(excl usi ve use of object pointers guarantees the fastest

di spat chi ng) :

CK&DI SPATCHL #typel actionl #t ype?2
action2 - #t ypen

action3

The obj ect-pair sequence must be termnated by a SEM (;).

CK&DI SPATCH1 proceeds as follows: For each typei, fromtypel
to typen, if typei matches the stack configuration then
execute actioni, discarding the rest of word containing
CK&DI SPATCH1. If no match is found, report the error "Bad
Argunment Type".

If a conplete pass is made through the table wthout a
successful match, the CK&DI SPATCHL nakes a second pass
through the table, this time stripping any tags from stack
obj ects and matching the remai ni ng objects against the
requi red types.

Page 63

The word CK&DI SPATCHO does not performthe second pass which
strips tags. This word should only be used where it is
inmportant to find a tagged object. The general behavior of
the HP 48 is to regard tags as being auxiliary to the tagee,
and thus CK&DI SPATCHL shoul d be used in nost cases.

A binary integer typei is nomnally encoded as foll ows:

#nnnnn
1]
[]]]+-- Level 1 argunent type
||| +--- Level 2 argunent type
|| +---- Level 3 argunent type
| +----- Level 4 argunent type
+------ Level 5 argunent type

Each "n" is a hexadecimal digit representing an object type,
as shown in the table below. Thus #00011 represents two
real nunbers; #O000AO indicates a synbolic class object
(symb, id, or lam) in level 2 and any type of object in
level 1. There are also two-digit object type nunbers,
ending in F;, use of any of these consequently reduces the
total nunber of arguments that can be encoded in a single
typei integer. For exanple, #13F4AF represents a real nunber
in level 3, an extended real in level 2, and an extended
conplex in level 1.

The follow ng table shows the hex digit values for each
argunent type. The colum "# nanme" shows the object pointer
nane for the corresponding binary integer that may be used
for a single argunent function. The "Binary Integers”
chapter contains a list of built-in binary integers that may
be used for various comon two-argument conbinations.

Val ue Argunent # nane User TYPE
0 Any bj ect any
1 Real Nunber real 0
2 Conpl ex Nunber cnp 1
3 Character String str 2
4 Array arry 3,4
5 Li st list 5
6 G obal Nane i dnt 6
7 Local Nane [am 7
8 Secondary seco 8
9 Synbolic synmb 9
A Synbolic d ass sym 6,7,9
B Hex String hxs 10
C G aphi cs Obj ect grob 11
D Tagged hj ect TAGGED 12
E Unit Object uni tob 13
OF ROM Poi nt er 14
1F Bi nary I nteger 20
2F Directory 15
3F Ext ended Real 21
4F Ext ended Conpl ex 22

Page 64

Li nked Ar
Char act er

ray

Code nj ect

Li brary
Backup

Li brary Data

Ext er nal
Ext er nal
Ext er nal
Ext er nal

objectl
obj ect 2
obj ect 3
obj ect4

Page 65

14.3 Exanpl es

Built-in commands and ot her words provi de good exanpl es of
t he check-and- di spatching scheme. The following is the
definition of the user command STO

CK2&Di spat ch

THI RTEEN XEQXSTO (2:any object 1:tagged object)
Sl X :: STRIPTAGSI 2 ?STO HERE ; (2:any 1:id)

SEVEN :: STRIPTAGSI 2 STO ; (2:any 1:1am)

NI NE ;. STRI PTAGSI 2 SYMSTO ; (2:any 1:synmb)

000c8 Pl CTSTO (2:grob 1: program [PICT])
009f 1 LBSTO (2:backup ob 1:real nunber)

008f 1 LBSTO (2:library 1:real nunber)

Since STOis a conmand, it starts with CK2&Di spatch, which
verifies that there are two argunents present, saves those
argunents and the command STO for error handling, then

di spatches to one of the action objects listed in the

di spatch table. If the level one object is tagged, STO

di spatches to the word XEQSTO For a gl obal name (id), STO
executes :: STRIPTAGSI 2 ?STO HERE ;, which is directly
enbedded in the STO program And so forth, down to the | ast
choice, which is a dispatch to LBSTO when the argunents are
alibrary in level 2, and a real nunber in |evel 1.

The TYPE conmmand provi des an exanpl e of dispatching at a
poi nt other than the start of a command. TYPE is a conmand,
but its argunment counting and argunent type di spatching are
separated so that the latter part can be called by other
systemwords that don't want to mark the stack:

K1

CK&DI SPATCHO
real %
cnp oul
str %R
arry XEQTYPEARRY
list 9%
id %6
[am %’
seco TYPESEC (8, 18, or 19)
synmb 9%
hxs %0
grob % 11
TAGGED % 12
uni t ob % 13
r onpoi nt er % 14
THIRTYONE (#) %20
rep % 15
3F (%) % 21
4F (C%%) % 22
5F (LNKARRY) % 23
6F (CHR) % 24
7F (CODE) % 25
library % 16

Page 66

backup % 17

AF % 26 (Library Data)
any % 27 (external)
SWAPDROP

CK&DI SPATCHO i s used here, although CK&DI SPATCHL woul d wor k
as well since tagged objects are explicitly listed in the
di spatch table. Notice also that the last typei is "any",
meani ng that type 27 is returned for any object type not
previously |isted.

The "inner" program (starting after the CK1) is the body of
t he system word XEQTYPE

Page 67

15. Loop Control Structures

Two types of |ooping structures are available - indefinite
| oops and definite | oops.

15.1 Indefinite Loops

Indefinite | oops are constructed from conbi nati ons of the
foll owi ng RPL words:

BEGN (-->)

Copies the interpreter pointer (RPL variable I) onto the return stack

Al so cal |l ed | DUP

UNTIL (flag -->)

If flag is TRUE, drops the top pointer on the return stack

copies that pointer to the interpreter pointer.

WH LE (flag -->)

ot herw se

If the flag is TRUE, then does nothing. Else drops the first pointer from
the return stack, and skips the interpreter pointer past the next two

obj ect s.

REPEAT (-->)
>

Copies the first pointer on the return stack to the interpreter pointer

AGAIN (-->)

The WHI LE loop is an indefinite | oop

BEG N

<t est cl ause>
VWH LE

<l oop object>
REPEAT

The WHI LE | oop executes <test clause> and if the result is
the systemflag TRUE, executes the <l oop object> and
repeats; otherwise it exits to past the REPEAT. The WH LE
| oop never executes if the first run of <test clause>
returns FALSE

The action of WHILE requires <l oop object>to be a single
object. However, the RPL conpiler automatically conbines
mul ti pl e objects between WH LE and REPEAT into a program
obj ect, so that

BEGA N

<test cl ause>
VWH LE

obl ... obn
REPEAT

is actually conpiled as

Page 68

BEG N
<test cl ause>
VWH LE
:: obl ... obn ;
REPEAT

Anot her common indefinite loop is the BEG N... UNTIL:

BEG N
<l oop cl ause>
UNTI L

This | oop executes at |east once, as opposed to the WH LE

| oop, which does not execute its |loop object if the initial
test is false. The word UNTIL expects a flag (TRUE or
FALSE)

The BEG N...AGAIN | oop has no test:
BEG N

<l oop cl ause>
AGAI N

Terminating this | oop requires an error event, or a direct
mani pul ation of the return stack

Page 69

15.2 Definite Loops

Definite loops with a | oop counter are achieved in RPL by
means of the DO Loop. The word DO takes two binary integer
objects fromthe stack, and stores the top object as the

i ndex and the other as the stopping value in a special
DoLoop environnment. DO also copies the interpreter pointer
onto the return stack. DoLoop environnents are stacked, so
that they can be nested indefinitely. The topnost index is
recal l ed by INDEX@ the index in the second environnment by
JINDEX@ The topnost stopping value is available via

| STOP@

DO s counterparts are LOOP and +LOOP. LOOP increnents the

i ndex value in the topnost DoLoop environnent; then, if the
(new) value is greater than or equal to the stopping val ue,

LOOP drops the top pointer fromthe return stack and renoves
t he topnost DoLoop environment. O herw se, LOOP acts copies
the top return stack pointer to the interpreter pointer.

The standard form of a DoLoop is

stop start DO <l oop cl ause> LOOP,

whi ch executes <l oop clause> for each value of an index from
start to stop-1.

+LOOP is simlar to LOOP, except that it takes a binary
integer fromthe stack and increments the | oop counter by
t hat anount rather than 1.

15.2.1 Provided Wrds

The following words are provided for use with DO | oops.
Wrds marked with * are not recognized as special by the RPL
conpiler, so you should include conmpiler directives to
prevent warni ng nmessages. For exanple, #1+ ONE DO can be
foll owed by (DO which matches the following LOOP for the
sake of the conpiler but does not generate any conpiled
code.

#1+_ ONE_DO * (#finish -->)
Equi val ent to #1+ ONE DG, conmonly used to execute a | oop
#finish tines.

DO (#finish #start -->)
Begi ns DO | oop
DROPLOOP * (ob -->)
Performs DROP, then LOOP
DUP#0_DO * (#-->4#)
Begins # ... #0 DO | oop
DUPI NDEX@ (ob --> ob ob #i ndex)
Does DUP, then returns value of index in topnost DolLoop
env.
Exi t At LOOP (-->)
Stores zero in stopping value of topnost DoLoop environment
| NDEX@ (--> #index)
Returns i ndex of topnost DoLoop environment
| NDEX@¥- (#-->4#)

Subtracts index val ue of topnost

Page 70

| NDEXSTO (
| STOP@ (
| STOPSTO (
JI NDEX@ (
LooP (
NOT_UNTI L * (
ONE_DO * (
OVER! NDEX@ (
SWAP| NDEX@ (
SWAPLOOP * (

ZERA STOPSTO (

ZERO DO * (

t oLEN_DO (

15. 2.2 Exanpl es

FI VE ZERO
DO

| NDEX@
LOOP

DoLoop environnment from #

#-->)

Stores # as index of top DoLoop environment

--> #stop)

Returns stop value of the topnost DoLoop environment
#-->)

Stores new stop value in the topnost DolLoop environnent
--> #index)

Returns i ndex of second DoLoop environment

S)

End of |oop structure

flag -->)

End of |oop structure

#finish -->)

Begi ns #1...#finish DO | oop

obl ob2 --> obl ob2 obl #index)

Does OVER, then returns val ue of

i ndex in topnost DolLoop environnent

obl ob2 --> ob2 obl #i ndex)

Does SWAP, then returns value of index in topnost
DoLoop envi r onment

obl ob2 --> ob2 obl)

Does SWAP, then LOCP

S)

Stores zero as the stop value in the topnost DolLoop
envi r onnent

#finish -->)

Begins DO | oop from#0 to #finish

{list} -->{list})

Begins DO | oop from#1 of elements in list to stop val ue
#nunber - of - el ement s+1

This returns the val ues:

#00000 #00001 #00002 #00003 #00004

The foll owi ng sequence di spl ays each of the elenments (up to 8) of

alist of strings

on a separate display |ine.

DUPL ENCOVP
ONE_DO (DO)
DUP | NDEX@ NTHCOVPDROP
| NDEX@ DI SPN

LOOP

Page 71

A nore conpact version uses toLEN DO

t oLEN_DO (DO)
DUP | NDEX@ NTHCOVPDROP
| NDEX@ DI SPN

LOOP

Anot her version is slightly faster, since it avoids repeated extraction
of list elenents:

| NNERCOVP
#1+_ ONE_DO (DO)

| NDEX@ DI SPN
LOOP

This version displays the elenents in reverse order relative to the previous
ver si ons.

Page 72

16. Error Ceneration & Trapping

The RPL error handling sub-systemis invoked by execution of
the word ERRIMP, that is, when a procedure class object

wi shes to generate an error, it executes ERRIMP (probably
after setting the values of ERROR and ERRNAME). The
mechani cs of ERRIMP will be described |ater

16.1 Trappi ng: ERRSET and ERRTRAP

RPL provides procedure objects with the capability to

i ntercept execution of the error handling sub-system that
is, trap an error generated by an object which is | ower on
the threaded order. This capability is nmade avail able via
the built-in objects ERRSET and ERRTRAP used in the

foll ow ng way:

ERRSET <suspect object> ERRTRAP <if-error object> ..

In the above, an error generated by <suspect object>is to
be trapped. <if-error object> denotes the object to be
executed if <suspect object> generates an error. The exact
algorithmis: If <suspect object> generates an error, then
continue execution at <if-error object>; else, continue
execution beyond <if-error object>.

The action of <if-error object> is conpletely flexible; when
<if-error object> gets control, it nay exam ne the val ues of
ERROR and ERRNAME to determ ne whether or not it is even
concerned with the current error. If not, it may sinply re-
start the sub-system by executing ERRIMP. If so, it may
decide to handle the error, that is, clear both ERROR and
ERRNAMVE and NOT restart the sub-system It may al so di sable
execution of the remai nder of the program (perhaps via
RDROP) .

Not e t hat throughout (normal) execution of <suspect object>,
an object pointer to the followi ng ERRTRAP i s sonewhere in
the runstream

16.2 Action of ERRIMP

VWhen an RPL procedure wants to initiate an error, it
executes ERRIMP, which the error handling sub-system

ERRIMP cycl es through the RUNSTREAM fromthe interpreter
pointer | up through the return stack searching for an error
trap. Specifically, ERRIMP renoves pendi ng program bodies
fromthe RUNSTREAM until it finds one whose first elenent is
an object pointer addressing ERRTRAP (this program body may
correspond to a return stack level as well as the
interpreter pointer I). It then SKIPs over the object

poi nter to ERRTRAP and conti nues execution beyond it (at the
<if-error object>).

Note, therefore, that ERRTRAP is only executed if <suspect
object> term nates without generating an error; in this

Page 73

case, ERRTRAP will, anong other things, SKIP <if-error
obj ect> and conti nue execution beyond it.

If a procedure is not nmerely passing along an error that it
did not initiate, its invokation of ERRIMP should be
preceded by execution of ERRORSTO, which stores an error
nunber in a special systemlocation. ERROR@returns the
stored error nunber, which error traps can use to determ ne
if they want to handle a particular error. The error nunber
is stored and returned as a binary integer; the high-order
12 bits of the nunber represent the Library ID of the
library containing the error nmessage, and the renmaining bits
i ndicate the error nunber within the library's nmessage

tabl e.

16.3 The Protection Wrd

Each tenporary environnment and each DoLoop environment has a
protection word. The sole reason for the existence of this
protection word is to allow the error handling sub-systemto
di stingui sh tenporary and DoLoop environments that were in
exi stence at the time an error trap was set fromthose which
canme into being after the error trap was set. For exanple,
consi der the follow ng:

{ NULLLAM} BIND
TEN ZERO DO
ERRSET : :
{ NULLLAM } BIND
FI VE TWO DO
<pr ocedur e>

LOOP
ABND

ERRTRAP
"Procedure Fail ed" Fl ashMsg
LOOP

ABND

I f <procedure> generates an error, then this error will be
trapped by the word or secondary foll ow ng ERRTRAP

However, the inner DoLoop and tenporary environnents must be
del eted so that the outer procedure has avail able the
correct DoLoop paraneters and | ocal variables. The
protection word serves to abet this function

ERRSET i ncrenents the protection word in the topnost

Page 74

tenmporary environnment and the topnost DoLoop environment.
These topnost environnents therefore have a non-zero
protection word. (DO and BIND always initialize the
protection word to zero).

ERRTRAP and ERRIMP del ete tenporary and DolLoop environnents
(fromthe first to the last) until, in both cases, they find
one with a non-zero protection word, which is then
decrenented. Therefore, whenever either ERRIMP executes at
<if-error object> or ERRTRAP executes past <if-error
object>, only tenporary and DoLoop environments which

exi sted at the ERRSET will be present.

Not e especially that the protection word is nore than just a
switch so as to allow a practically indeterm nant |evel of
nesting of error traps.

The exampl e above is actually a poorly fornmed error trap -
the code should actually determ ne what the error was, and
take action accordingly. The word ERROR@ may be used to
recall which error occurred. The error nunbers correspond
to the message nunbers - see the nmessage table in appendix A
of the "HP48 Programers Reference Manual ".

16.4 FError Wrds

The following words are provided for error nanagemnent:

ABORT (-->)
Does ERRORCLR and ERRIMP
DOEEXI T (msg# -->)

Stores a new error nunber and executes ERRIMP;
al so executes At User St ack
Puts the object ERRIMP on the stack

ERRBEEP (-->)

Generates an error beep
ERRIMP (-->)

I nvokes error handling subsystem
ERROR@ (-->#)

Returns the current error nunber
ERRORCLR (-->)

Stores zero as the error nunber
ERROROUT (#-->)

Stores a new error nunber and does ERRIMP
ERRORSTO (#-->)

St ores new error nunber
ERRTRAP (-->)

Ski ps next object in runstream

Page 75

17. Test and Control

This chapter reviews words related to the flow of control:
condi ti onal and unconditional branches and the associated
test words.

17.1 Flags and Tests

TRUE and FALSE are built-in objects that are recogni zed by
test words as flags for branching decisions. The foll ow ng
words create or conbine flags:

AND (flagl flag2 --> flag)
If flagl and flag2 are both TRUE then TRUE el se FALSE.

FALSE (--> FALSE)
Puts the FALSE flag on the stack.

FALSETRUE (--> FALSE TRUE)
Fal seFal se (--> FALSE FALSE)

OR (flagl flag2 --> flag)
If either flagl or flag2 is TRUE then TRUE el se FALSE.

ORNOT (flagl flag2 --> flag3)
Logi cal OR followed by | ogical NOT.

NOT (flag --> flag'
If flag is TRUE then FALSE el se TRUE.

NOTAND (flagl flag2 --> flag3)
Logi cal NOT, then |ogical AND.

ROTAND (flagl ob flag2 --> ob flag3)
Does ROT, then | ogical AND.

TRUE (--> TRUE)
Puts the TRUE flag on the stack.

TrueFal se (--> TRUE FALSE)

TrueTrue (--> TRUE TRUE)

XOR (flagl flag2z --> flag)

If both flagl and flag2 are either TRUE or FALSE then FALSE, el se TRUE.
COERCEFLAG (TRUE --> %4)

(FALSE --> %)
Converts a systemflag to a real nunber flag.

Page 76

17.1.1 Ceneral _Object_Tests
The following words test object type and equality:

EQ (obl ob2 --> flag)
If objects obl and ob2 are the sane object, i.e. occupy the sane
physi cal space in nenory, then TRUE el se FALSE

EQUAL (obl ob2 --> flag)
where obl and ob2 are not prinmtive code objects. If objects obl and
ob2 are the sane then TRUE el se FALSE (this word is the system
equi val ent of the user RPL command SAME)

2DUPEQ (obl ob2 --> obl ob2 flag)
Returns TRUE if obl and ob2 have the sane physical address.

EQOR (flagl obl ob2 --> flag2)
Does EQ then |ogical OR

EQUALOR (flagl obl ob2 --> flag2)
Does EQUAL, the logical OR

EQOVER (obl ob2 ob3 --> obl flag obl)
Does EQ then OVER

EQUALNOT (obl ob2 --> flag)
Returns FALSE if obl is equal to ob2.

The following words test an object's type. Wrds of the
formTYPE...? have a stack diagram(ob --> flag); those
of the formDTYPE...? or DUPTYPE...? duplicate the object
first (ob -->o0b flag).

Test Words hj ect type
TYPEARRY? array
DTYPEARRY?

DUPTYPEARRY?

TYPEBI NT? bi nary integer
DUPTYPEBI NT?

TYPECARRY? conpl ex array
TYPECHAR? char acter
DUPTYPECHAR?

TYPECWP? conpl ex nunber
DUPTYPECWP?

TYPECCL? program
DTYPECCL?

DUPTYPECOL?

Page 77

TYPECSTR?
DTYPECSTR?
DUPTYPECSTR?

TYPEEXT?
DUPTYPEEXT?

TYPEGROB?
DUPTYPEGRCB?

TYPEHSTR?
DUPTYPEHSTR?

TYPEI DNT?
DUPTYPEI DNT?

TYPELAM?
DUPTYPELAM?

TYPELI ST?
DTYPEL| ST?
DUPTYPELI ST?

string

uni t

graphi cs obj ect

hex string

identifier (global name)

tenporary identifier (local name)

i st

TYPERARRY? real array
TYPEREAL? real nunber
DTYPEREAL?

DUPTYPEREAL?

TYPEROWP? ROM poi nter (XLIB nane)
DUPTYPEROWP?

TYPERRP? Directory
DUPTYPERRP?

TYPESYMB? Synbol i c
DUPTYPESYMB?

TYPETAGGED? Tagged
DUPTYPETAG?

17.1.2 Binary_Integer_Conparisons

The foll owi ng words conpare binary integers, returning TRUE
or FALSE. Equality is tested in the sense of EQUAL (not EQ .
Ordering treats all binary integers as unsigned. Some of
these words are al so available in conbination with case

wor ds (see bel ow).

#= (## -->flag) TRUE if # = #' .
#<> (## -->flag) TRUE if # <> # (not equal).
#0= (#-->flag) TRUEif # =0

Page 78

#0<> (# --> flag) TRUE if # <> 0
#< (## -->flag) TRUE i f # < #
#> (## -->flag) TRUE if # > #
2DUPH< (# # --># # flag) TRUE if # < #
2DUPH= (# # --># # flag) TRUEif # = #
DUP#O= (# --> # flag) TRUE i f # = #0
DUP#1= (# --> # flag) TRUE i f # = #1
DUP#O<> (# --> # flag) TRUE i f # <> #0
DUP#1= (# --> # flag) TRUE i f # = #1
DUP#<7 (# --> # flag) TRUE i f # < #7
DUPY= (%--> %flag) TRUE if %= %
ONE#> (# -->flag) TRUE i f # > #1
ONE EQ (# -->flag) TRUE if # is ONE
OVERH> (# # --># flag) TRUE if # > #
OVER#O= (# ob --> # ob flag) TRUE if # is #0
OVERH< (# # --> # flag) TRUE if # > #
OVER#= (# # --># flag) TRUE if # = #
OVERH> (# # --># flag) TRUE if # < #

17.1.3 Decimal _Nunber Tests

The foll owi ng words conpare real, extended real, and conpl ex
nunbers, returning TRUE or FALSE

U (%% -->flag) TRUE i f %< %
Y= (%% -->flag) TRUE i f % <= %
v> (%% -->flag) TRUE i f % <> %
% (%% -->flag) TRUE if %= %
% (%% -->flag) TRUE if %> %
Y= (%% -->flag) TRUE i f % >= %
%< (%-->flag) TRUE if %< 0

Page 79

%<> (%-->flag) TRUE if %<>0

%0= (%-->flag) TRUE if % =0
99> (%-->flag) TRUE if %> 0
W>= (%-->flag) TRUE i f % >= 0
Wo<= (WHWbs --> flag) TRUE i f 986 <= %%
wWo<> (Wh--> flag) TRUE i f %6 <> 0
wWo= (Wh-->flag) TRUE i f %6= 0
wWo> (Wh-->flag) TRUE i f 986> 0
Wo>= (Wh--> flag) TRUE i f 986 >= 0
We (%% %6 --> flag) TRUE i f 986> %94
We= (WHWs --> flag) TRUE i f 986 >= %%
We= (WHWb --> flag) TRUE i f 986 <= %%
8= (CWh--> flag) TRUE i f C9%86 = (980, %80)
c®= (%-->flag) TRUE i f C% = (0, 0)

17.2 Words that Operate on the Runstream

In many cases, it is desirable to interrupt the normal

t hreaded order of execution, and insert additional objects
or skip others in the runstream The follow ng words are
provi ded for these purposes.

" (-->o0b)

This is the RPL anal ogue of the Lisp QUOTE and is one of
t he nost fundanental control objects, allow ng the
eval uation of an object to be postponed. Mre precisely,
assunes that the topnost body in the RUNSTREAM i s non-
enpty, i.e. the interpreter pointer does not point at a
SEM; and (1) If the next object in the runstreamis an
obj ect, then pushes this object onto the data stack and
noves the interpreter pointer to the next object; (2) If
t he next object is an object pointer, then pushes the
poi ntee on the data stack and simlarly skips to the next
object. As an exanple, evaluation of the secondaries

3 # 4 SWAP ; and o # 3 # 4" SWAP EVAL

bot h produce the sanme result.

Page 80

'R (-->o0b)

ti

If the object pointed to by the top pointer on the return
stack (i.e. the first element in the second body in the
runstream) is an object, then 'R pushes this object onto

t he data stack, and advances the pointer to the next

object in the sanme conposite. |If the pointer points to an
obj ect pointer whose pointee is not SEM, then pushes the
poi ntee onto the data stack, and simlarly advances the
return stack pointer. |If the pointee is SEM, then If the
first elenent in the second body in the runstreamis an
object pointer to SEM, then pushes a null secondary onto
the data stack and does not advance the return stack
pointer. 'R is useful in defining prefix operators. For
exanpl e, assume that PREFI XSTO is defined as :: 'R STO ;
Then the sequence PREFI XSTO FRED ANOTHEROBJECT woul d first
push FRED onto the data stack and then execute STQO, after
whi ch execution resunes at ANOTHEROBJECT.

cR (--> ob TRUE | FALSE)

This word works simlarly to 'R except that it returns a
flag to indicate whether the end of the top return stack
conposite has been reached. That is, if the top return
stack pointer points to an object pointer to SEM, then

ti cR pops the return stack and returns only FALSE

O herwi se return the next object fromthe conmposite and
TRUE, while advancing the return stack pointer to the next
obj ect.

SR(11 -->)

Inserts the body of :: into the runstream just bel ow the
top one. (That is, pushes a pointer to the body of
onto the return stack). An exanple of its use is

' <foo>; >R <bar> ;

which will, when executed, cause <bar> to be executed
bef ore <foo>.

R (-->::)

Creates a program object fromthe conposite body pointed
to by the top return stack pointer, and pushes the program
on the data stack and pops the return stack. Exanple:

R> EVAL <foo> ; <bar>

whi ch, when executed, will cause <bar> to be executed
bef ore <foo>.

R@&(-->::)

Sanme as R> except that the return stack is not popped.

Page 81

RDROP (-->)
Pops the return stack.
IDUP (-->)

Duplicates the top body in the runstream (That is, pushes
the RPL variable | onto the return stack).

COA (-->)

Assuming that the interpreter pointer is pointing at an
obj ect other than SEM, COLA drops the renmai nder of the
program body past the object and executes the object.

This provides for efficient tail recursion; the efficiency
is gained in that COLA can be used to avoid excessive
bui |l dup of pending returns. An exanple of its use is in a
definition of factorial:

fact: . { LAMx } BIND # 1 factpair ABND
factpair: :: LAM x #0= ?SEM

LAM x #* LAM x #1- ' LAM X
STO COLA factpair

In this exanple, the inmportance of COLAis inits
occurrence before factpair in the definition of factpair.
Wthout this use, conmputing n! would require n return
stack levels, which, when the conputation was conpl et ed,
woul d nmerely be popped off (since their bodies would be
enpty). Wth the inclusion of COLA the definition uses a
fi xed maxi mum nunber of |evels, independent of the
argunent to the function.

?SEM (flag -->)
Exits the current programif flag is TRUE.

?SEMDROP (ob TRUE -->) or (FALSE -->)

Drops ob if flag is TRUE, exits the current programif
flag i s FALSE

?SKIP (flag -->)
If flag is TRUE, skips the next object foll ow ng ?SKIP.
NOT?SEM (flag -->)

Exits the current programif flag is FALSE.

Page 82

17.3 1 f/ Then/ El se

The fundanental RPL if/then/else capability is provided by
nmeans of the words RPIT and RPITE:

RPITE (flag obl ob2 --> ?)
If flag is TRUE then drop flag and ob2 and EVALuate obl

el se drop flag and obl and EVALuate ob2. The RPL
expr essi on

' <foo>"' <bar> RPITE
is equivalent to the FORTH expression
| F <f oo> ELSE <bar> THEN
RPIT (flag ob --> ?)

If flag is TRUE then drop flag and EVALuate ob, el se just
drop flag and ob. The RPL expression

' <foo> RPIT
is equivalent to the FORTH expression
| F <f oo> THEN

However, prefix versions of these words are al so avail abl e,
and are nore commonly used than the postfix fornmns:

I T (flag -->)

If flag is TRUE then execute the next object in the
runstream otherw se skip that object. For exanple,

DUPTYPEREAL? IT :: % %C%,

converts a real nunmber to a conpl ex nunber; does nothing
if the argunment is not a real nunber.

I TE (flag -->)
If flag is TRUE the execute the next object in the
runstream and skip the second object; otherw se skip the
next object and execute the second. For exanpl e,
DUPTYPELI ST? | TE | NNERCOVP ONE
takes a list apart, |leaving the count on the stack; for

any other type of argunent, push a binary integer #1 on
t he stack.

Page 83

The converse of ITis
?SKIP (flag -->)

If flag is TRUE, skip the next object in the runstream
ot herwi se, execute it.

There is al so an unconditional skip:
SKIP (-->)

Ski ps over the next object in the runstream and conti nues
execution beyond it. The sequence SKIP ; is a NOP.

Conbi nati on Wrds:

Word St ack Equi val ent
#0=I TE (#-->) #0= I TE
#<I TE (#-->) #0< | TE
#=1 TE (#-->) #= | TE
#>| TE (#-->) #> | TE
ANDI TE (flag flag' -->) AND | TE
DUPHO=ITE (# --> #) DUP #0= I TE
EQT (obl ob2 -->) EQIT
EQ TE (ob ob' -->) EQ I TE
DUP#0=I T (#-->4#) DUP #0= 1T
Sysl TE (#-->)
User | TE (#-->)

17.4 CASE words

The word case is a conbination of ITE, COLA and SKIP. That
is, case takes a flag fromthe stack; if TRUE, case executes
the object that follows it in the runstream while popping
the return stack to the interpreter pointer, discarding the
rest of the programthat follows the object (like COLA). If
FALSE, case skips the next object and continues with the
program (like SKIP). For exanple, the follow ng program
executes different objects according to the value of a

bi nary integer on the stack:

DUP #0= case ZEROCASE

DUP ONE #= case ONECASE
DUP TWD #= case TWOCASE

Page 84

There are several words that contain case as part of their
definitions. The above exanple can be witten nore
conmpactly usi ng OVER#=case:

ZERO OVER#t=case ZEROCASE
ONE OVER#=case ONECASE
TWD OVER#=case TWOCASE

The actions of the words |isted bel ow are generally
sufficiently clear fromtheir nanes. The names have (up to)
three parts: an initial part, then "case", then a fina

part. The initial part indicates what is done before the
case action, i.e. "xxxcase..." is equivalent to "xxx

case...". Wrds that have a final part after "case" are of
two types. For one type, the final part indicates the
conditionally executed object itself, i.e. "...caseyyy" is
equivalent to "...case yyy." In the other type, the final

part is a word or words that are incorporated into the

foll owi ng object. caseDROP and casedrop are of the first
type and second type, respectively. caseDROP is equival ent
to case DROP; casedrop is like case with a DROP incorporated
into the next object. That is,

Wbrds that COLA or SKIP the next object:
#=casedr op (##-->)
(## -->#)
Shoul d be naned OVER#=casedr op.
%=case (%-->)
%=case (%-->flag)
ANDNOTcase (flagl flag2 -->)
ANDcase (flagl flag2 -->)

case2drop (obl ob2 TRUE -->)
(FALSE -->)

casedrop (ob TRUE -->)
(FALSE -->)

DUP#0=case (#-->#)

DUP#0=csedr p #-->#)

(
(#-->)
EQUALNOTcase (ob ob' -->)

EQUALcase (ob ob' -->)

EQUALcasedrp (ob ob' ob'" -->)

(ob ob' ob'"' --> o0b)
EQcase (obl ob2 -->)
NOTcase (flag -->)
NOTcasedrop (ob FALSE -->)

(TRUE -->)
QRcase (flagl flag2 -->)

OVER#=case (## -->#)

Case words that either exit or continue with the next object:
caseDoBadKey (flag -->) Exit via DoBadKey

caseDrpBadKey (ob TRUE -->) Exit via DoBadKey
(FALSE -->)

case2DROP (obl ob2 TRUE -->)
(FALSE -->)

caseDROP (ob TRUE -->)
(FALSE -->)

caseFALSE (TRUE --> FALSE)
(FALSE -->)

caseTRUE (TRUE --> TRUE)
(FALSE -->)

casedrpfls (ob TRUE --> FALSE)
(FALSE -->)

case2drpfls (obl ob2 TRUE --> FALSE)
(FALSE -->)

casedrptru (ob TRUE --> TRUE)

(FALSE -->)
DUP#0=csDROP (#0 -->)

(# -->#) #<>0.
NOTcaseTRUE (FALSE --> TRUE)

(TRUE -->)

Page 86

18. Stack Operations

The words listed in this chapter performsingle or multiple
stack operations.

2DROP (obl ob2 -->)

2DROPO0 (obl ob2 --> #0 #0)

2DROPFALSE (obl ob2 --> FALSE)

2DuUP (obl ob2 --> obl ob2 obl ob2)
2DUP5ROLL (obl ob2 0ob3 --> ob2 ob3 ob2 ob3 obl)
2DUPSWAP (obl ob2 --> obl ob2 ob2 obl)

20VER (obl ob2 ob3 ob4 --> obl ob2 ob3 ob4 obl ob2)
2SWAP (obl ob2 ob3 ob4 --> ob3 ob4 obl ob2)
3DROP (obl ob2 0b3 -->)

3PI CK (obl ob2 0b3 --> obl ob2 o0b3 obl)

3PI CK3PI CK (obl ob2 0ob3 --> obl ob2 ob3 obl ob2)
3Pl CKOVER (obl ob2 0ob3 --> obl ob2 ob3 obl 0ob3)
3Pl CKSWAP (obl ob2 0b3 --> obl ob2 obl ob3)
3UNROLL (obl ob2 ob3 --> ob3 obl ob2)

4DROP (obl ob2 ob3 ob4 -->)

4P1 CK (obl ob2 ob3 ob4 --> obl ... ob4 obl)
4Pl CKOVER (obl ob2 ob3 ob4 --> obl ob2 ob3 ob4 obl ob4)
4Pl CKSWAP (obl ob2 ob3 ob4 --> obl ob2 ob3 obl ob4)
4RCOLL (obl ob2 ob3 ob4 --> ob2 ob3 ob4 obl)
4UNROLL (obl ob2 ob3 ob4 --> ob4 obl ob2 ob3)
4UNROLL3DROP (obl ob2 ob3 ob4 --> ob4)

4UNROLLDUP (obl ob2 ob3 ob4 --> ob4 obl ob2 ob3 ob3)
4UNROLLROT (obl ob2 ob3 ob4 --> ob4 ob3 ob2 obl)
5DROP (obl ... ob5 -->)

5P1 CK (obl ... ob5 -->o0bl ... ob5 obl)
5ROLL (obl ... ob5 -->0b2 ... ob5 obl)
5ROLLDROP (obl ... ob5 -->o0b2 ... 0b5)
5UNROLL (obl ... ob5 --> 0b5 obl ... ob4)
6DROP (obl ... ob6 -->)

6PI CK (obl ... ob6 --> o0bl ... 0b6 obl)
6ROLL (obl ... ob6 --> 0b2 ... 0b6 obl)
7DROP (obl ... ob7 -->)

7P1 CK (obl ... ob7 --> obl ... ob7 obl)
7ROLL (obl ... ob7 --> 0ob2 ... ob7 obl)

8PI CK (obl ... ob8 --> o0bl ... 0b8 obl)
8ROLL (obl ... ob8 --> 0b2 ... 0b8 obl)
8UNROLL (obl ... ob8 --> 0b8 obl ... ob7)
DEPTH (obl ... obn ... --> #n)

DROP (ob -->)

DROPDUP (obl ob2 --> obl obl)

DROPFALSE (ob --> FALSE)

DROPNDROP (... #ob) Drops ob, then # objects
DROPONE (ob --> #1)

DROPOVER (obl ob2 ob3 --> obl ob2 obl)
DROPRDROP (ob -->) Drops ob, and pops 1 return stk |evel
DROPROT (obl ob2 ob3 ob4 --> ob2 ob3 obl)
DROPSWAP (obl ob2 0b3 --> 0b2 obl)
DROPSWAPDROP (obl ob2 ob3 --> ob2)

DROPTRUE (ob --> TRUE)

DROPZERO (ob --> #0)

DUP (ob --> ob ob)

DUP#1+PI CK (... #n --> ... #n obn)

DUP3PI CK (obl ob2 --> obl ob2 ob2 obl)

Page 87

DUP4UNROLL (obl ob2 0b3 --> 0b3 obl ob2 ob3)
DUPDUP (ob --> ob ob ob)

DUPONE (ob --> ob ob #1)

DUPPI CK (#n --> ... #n obn-1)

DUPROLL (... #n --> ... #n obn-1)

DUPROT (obl ob2 --> ob2 ob2 obl)

DUPTWO (ob --> ob ob #2)

DUPUNROT (obl ob2 --> ob2 obl ob2)
DUPZERO (ob --> ob ob #2)

N+1DROP (ob obl ... obn #n -->)

NDROP (obl ... obn #n -->)

NDUP (obl ... obn #n --> obl ... obn obl ... obn)
NDUPN (ob #n --> ob ... ob #n)
ONEFALSE (--> #1 FALSE)

ONESWAP (ob --> #1 ob)

OVER (obl ob2 --> obl ob2 obl)

OVER5PI CK (VWXYy Z-->VWXYyzZyVv)
OVERDUP (obl ob2 --> obl ob2 obl obl)
OVERSWAP (obl ob2 --> ob2 obl obl)
OVERUNROT (obl ob2 --> obl obl ob2)

Pl CK (obn ... #n --> ... obn)

ROLL (obn ... #n --> ... obn)

RCOLLDRCOP (obn ... #n --> ...

ROLLSWAP (obn ... ob #n --> ... obn ob)
ROT (obl ob2 ob3 --> ob2 ob3 obl)
ROT2DRCOP (obl ob2 ob3 --> ob2)

ROT2DUP (obl ob2 ob3 --> ob2 ob3 obl ob3 obl)
ROTDROP (obl ob2 ob3 --> ob2 ob3)
ROTDROPSWAP (obl ob2 0b3 --> 0b3 ob2)

ROTDUP (obl ob2 0b3 --> o0b2 ob3 obl obl)
ROTOVER (obl ob2 0b3 --> 0b2 ob3 obl ob3)
ROTROT2DROP (obl ob2 ob3 --> 0b3)

ROTSWAP (obl ob2 ob3 --> ob2 obl ob3)
SWAP (obl ob2 --> ob2 obl)

SWAP2DUP (obl ob2 --> ob2 obl ob2 obl)
SWAP3PI CK (obl ob2 0b3 --> obl ob3 ob2 obl)
SWAP4PI CK (obl ob2 ob3 ob4 --> obl ob2 ob4 ob3 ob4)
SWAPDROP (obl ob2 --> ob2)

SWAPDROPDUP (obl ob2 --> ob2 ob2)
SWAPDROPSWAP (obl ob2 0b3 --> 0b3 obl)
SWAPDROPTRUE (obl ob2 --> ob2 TRUE)

SWAPDUP (obl ob2 --> ob2 obl obl)
SWAPONE (obl ob2 --> ob2 obl #1)
SWAPOVER (obl ob2 --> ob2 obl ob2)

SWAPROT (obl ob2 ob3 --> ob3 ob2 obl)
SWAPTRUE (obl ob2 --> ob2 obl TRUE)

UNROLL (... ob#n -->0b ...)

UNROT (obl ob2 ob3 --> ob3 obl ob2)
UNROT2DROP (obl ob2 ob3 --> 0b3)

UNRCTDROP (obl ob2 0b3 --> 0b3 obl)
UNROTDUP (obl ob2 0b3 --> 0b3 obl ob2 ob2)
UNROTOVER (obl ob2 0b3 --> 0b3 obl ob2 obl)
UNROTSWAP (obl ob2 0b3 --> 0b3 ob2 obl)
ZEROOVER (ob --> ob #0 ob)

reversym (obl ... obn #n --> obn ... obl #n)

Page 88

19. Menory Operations

The words presented in this chapter mani pul ate directories,
vari abl es, and systemram

19.1 Tenporary Menory

The user word NEWDB creates a new copy of an object in
tenporary nmenory. There are a few internal variations on
this thene:

CKREF (ob --> o0b")
If obis in TEMPOB, is not enbedded
in a conposite object, and is not
ref erenced, then does nothing. O herw se
copies ob to TEMPOB and returns the copy.

| NTEMNOTREF? (ob -->o0b flag)
If the input object is in TEMPOB area,
is not enbedded in a conposite object,
and is not referenced, returns ob and
TRUE, otherw se returns ob and FALSE

TOTEMPOB (ob --> o0ob')
Copi es ob into TEMPOB and returns pointer
to the new ob.

19.2 Variables and Directories

The system RPL basis of user STO and RCL is the words STQ,
CREATE, and @

CREATE (ob id -->)
Creates a RAMWIRD with ob as its object part and the NAVE
FORM fromid as its nane part, in the current directory.
An error occurs if ob is or contains the current directory
("Directory Recursion"). Assumes that ob is not a
primtive code object.

STO(ob id -->)
(ob lam-->)

In the lamcase, the tenporary identifier lamis re-bound
to ob. The binding is to the first such tenporary
identifier object matching lamin the Tenporary
Envi ronnent area (searching fromthe first tenporary
environnent to the last). An error is returned if lamis
unbound. In the id case, STO attenpts to match id to the
nane part of a global variable. |If resolution is
unsuccessful, STO creates a variable with ob as its object
part and the nane formfromid as its nanme part, in the
current directory. If resolution is successful, then ob
repl aces the object part of the resolved variable. If any
updat abl e system obj ect pointers reference the object part
of the resolved variable, then the object part is placed
into the tenmporary object area prior to the replacenent
and all affected updatable system object pointers are

Page 89

adjusted to reference the copy of the object part in the

tenporary object area. For the id case, STO assumes that

ob is not a primtive code object.
@ (id-->o0b TRUE)

(id--> FALSE)

(lam--> ob TRUE)

(lam--> FALSE)
In the lamcase, @attenpts to match lamto the tenporary
identifier object part of a binding in the Tenporary
Envi ronnent area (searching fromthe first tenporary
environnent to the last). If successful, then the object
bound to lamis returned along with a TRUE flag; else, a
FALSE flag is returned. In the id case, @attenpts to
match id to the nane part of a global variable, starting
in the current directory, and working up through parent
directories if necessary. |If the resolutionis
unsuccessful, then a FALSE flag is returned. O herw se,
the object part of the resolved variable is returned with
a TRUE fl ag.

One difficulty in using STO and @i s that they make no
distinctions for built-in commands; with SIN as its (object)
argunent, STOw Il blithely copy the entire body of SINinto
a variable. @then would recall that undeconpil able
program For this reason, it is better to use SAFESTO and
SAFE@ which work |ike STO and @except that they
automatically convert ROM bodies into XLIB nanes (SAFESTO
and back agai n (SAFE@.

Addi ti onal extensions are:

?STOHERE (ob id -->)
(ob lam-->)

This is the systemversion of user STO It is the sane as
SAFESTO, except that for gl obal variables, it a) stores
only in the current directory; and b) will not overwite a
stored directory.

SAFE@HERE (id --> ob TRUE)

(id--> FALSE)

(lam--> ob TRUE)

(lam--> FALSE)

Sanme as SAFE@ except for global variables the search is restricted to the

current directory.

O her rel ated words:
PURGE (id -->) Purges variable specified by id; does
no type check on
stored object.
XEQRCL (id --> ob) Same as SAFE@for gl obal vari abl es,

but errors
if variable is nonexistent

Page 90

XEQSTAOD (ob id -->) Aternate nane for ?STO HERE

19.2.1 Directories A directory (abbreviated "rrp" fromits
original name "ranronpair") is an object whose body contains
a linked-list of global variabl es--nanmed objects referenced
by gl obal nanes. The body al so contains a library ID nunber
that associates ("attaches") a library object with the
directory so that the library's commands foll ow the
directory's variables in the name conpil ation search order

A directory may be "rooted", i.e. stored in a gl obal
variabl e (which may be within another directory body), in
which case its variable's nanes are available for
conpilation. The particular directory in which a nanme
resol uti on search begins is called the "current directory,"
or the "context directory;" this directory is specified by
the contents of a system RAM | ocation. An unrooted
directory (in tenpob or in a port, for exanple), should
never be selected as the context directory. Nor can there
be any references within a directory in tenpob; a directory
is not a conposite object, so garbage collection cannot work
properly if such references exist. For this reason, an
internally referenced directory should not be renoved by
PURGE- - use XEQPGDI R i nst ead.

In addition to the context, another system RAM | ocati on
identifies the "stopsign"” directory, which is acts as the
endi ng point for a name resolution search nmuch as the
context directory is the starting point. By using the
stopsign, you can restrict nane resolution searches to a
speci fic range; however, you should use error traps to
insure that the stopsign is reset to the honme directory when
an error occurs.

The hone directory (aka "sysranronpair™) is the default for
both context and stopsign. This is not a normal directory,
inthat it is never unrooted, and contains additiona
structure that ordinary directories don't have (such as
multiple library attachnents and alternate nmessage and
command hash tabl es).

A directory is a data-class object so that execution of a
directory merely returns it to the stack. However, gl oba
nane execution has the property that executing the name of a
rooted (stored) directory makes that directory the current
directory rather than executing the directory itself.

The following words are avail able for directory
mani pul ati on:
CONTEXT! (rrp -->)
Stores a pointer to a rooted directory as the current directory

CONTEXT@ (-->rrp)
Recal I s the current context directory.

CREATEDI R (id-->)
Creates a directory object in the current directory.

Page 91

DOVARS (-->{ idlid2 ... })
Returns list of variable names fromthe current directory.

HOMEDIR (-->)
Makes HOMVE the current directory.

PATHDIR (--> { HOVE dir dir ... })
Returns the current path.

UPDIR (-->)
Swi tches context to the parent of the current directory.

XEQORDER ({ idlid2 ... } -->)
ORDERs current directory.

XEQPADIR (id -->)
Purges a directory while respecting reference/ garbage coll ection
conventi ons.

19.3 The Hi dden Directory

There is a hidden, nullnamed directory at the begi nning of
the hone directory, that contains the user key definitions
and alarminformation. Application progranms may use this
directory as well. However, remenber that the user has no
way to detect or renpve variables fromthis directory, so an
application should either renove such variables before
finishing, or to provide a command that |lets the user renove
specific variables fromthe hidden directory.

These words provide store, recall and purge capabilities for
t he hidden directory:

PuH ddenVar (id -->) Purges the hidden variable naned id.
Rcl Hi ddenVar (id --> ob TRUE)
id--> FALSE)
Recalls (@ a hidden vari abl e.

St oH ddenVar (obid-->)
Stores ob in hidden variabl e

Page 92

19.4 Additional Menmory Uilities

GARBAGE (-->)
Forces garbage col |l ection.

MEM --> #)
Returns the amount of free nmenory (a garbage collection is not forced)

OCRC (ob --> #nibbl es checksun{hxs) Returns size of object in nibbles and
a hex string checksum

get ni bs (hxsDATA hxsADDR --> hxsDATA") Internal RPL version of PEEK

put ni bs (hxsDATA hxsADDR -->) Internal RPL version of POKE

Page 93

20. Display Managenent & G aphics

Most user RPL graphics commands are directed to the graphics
screen, which is the graphics object visible in the plot

envi ronnent. However, the "text screen,” the grob visible in
the standard stack environnment, has the same properties as

t he graph screen, and should be used by application prograns
for graphics displays whenever possible, to | eave the graph
screen as a user "owned" resource. The Equati onWiter does
this, for exanple, as does the HP82211A HP Sol ve Equati on

Li brary card.

20.1 Display Organization

HP 48 system RAM contai ns three dedi cated graphics objects
used for display purposes:

Poi nt er G ob Locati on
R +
HARDBUFF2 -> | Menu labels | (Low Mem
R +
ABUFF -> | text grob
R +
GBUFF -> | graph grob | (H Mem
R +

The text grob and graph grob may be enl arged, and may be
scrol | ed.

The word TQADI SP switches nmakes the text grob visible;
TOGDI SP switches the LCD to the graph grob

The followi ng words are useful for returning display grobs
to the stack:

ABUFF (--> textgrob)
G&BUFF (--> graphgrob)
HARDBUFF (--> HBgrob)
Ret urns whi chever of the text or graph grob is currently displayed.
HARDBUFF2 (--> nenugrob)
HBUFF_X Y(--> HBgrob #x1 #yl)

A ram poi nter naned VDI SP i ndicates which grob is currently
shown in the display. VDI SP may point to either the text
grob or the graph grob. VDISP is not directly accessible -
the word HARDBUFF returns the current display grob to the
stack (see below). Renenber that ABUFF and GBUFF j ust
return pointers, so if the grob is being recalled for

nodi fication and later return to the user, TOTEMPOB should
be used to create a unique copy in tenmporary nmenory.

Page 94

From a user's point of view, the text display is organized
into three regions, and the internal nunbering convention
for these areas is reflected in many of the display control
words (see "Display Area Control" below). The display areas
are nunbered 1, 2, and 3. The letters "DA", for "D splay
Area", are found in the nanes of some display control words.

R +

DAl | directory time | Status line (16 lines)
R +
| 4: |

DA2a | 3: | Stack
e + Displ ay

DA2b | 2: | (40 lines total)
| 1: |
R +

DA3 | 1 2 3 4 5 6| Menu |labels (8 Iines)
R +

Display area 2 is actually divided into areas 2a and 2b, a
di stinction nost often used by the command line line. The
boundary between 2a and 2b can nove, but the overall sizes
of areas 1, 2, and 3 are fixed.

20.2 Preparing the D splay

Two words establish control over the text display. These
wor ds are RECLAI MDI SP and C r DAll sSt at .

The word RECLAI MDI SP perforns the foll ow ng actions:
+ Makes sure the text grob is the current display.
+ Clears the text display.

+ Resizes the text grob to the standard size (131 w de by
56 high) if necessary.

RECLAI MDI SP is very nmuch |ike the user word CLLCD, except
that CLLCD does not resize the text grob

The word Cl rDAll sStat suspends the ticking clock display,
and is optional. If user input will be requested using words
i ke WaitForKey or a paraneterized outer |oop (see "Keyboard
Input”), then the clock updates will continue, and may botch
t he di spl ay.

An exanpl e usage of C rDAllsStat can be found in the
Peri odi c Tabl e application, where a user can enter a
nmol ecul ar formula. The word WaitForKey is used to get
keystrokes, and C rDAllsStat prevents the clock from
overwiting the Periodic Table grid display.

If the menu display is not needed, the word TURNMENUOFF wi | |
renove DA3 fromthe display and enlarge the text grob to be

Page 95

131x64. The correspondi ng word TURNMENUON restores the menu
di spl ay.

A sinplified framework for an application secondary which

can be invoked by an end user and uses the text display
| ooks like this:

..G r DA1l sSt at (*Suspend cl ock display updates*)

RECLAI MDI SP (*Assert & clear al pha display*)
TURNVENUOFF (*Renove nenu keys*)

< application >

ArDASCK -\ (*Tell the 48 to redraw the I cd*)
-or- > Choose one
Set DAsTenp -/ (*Freeze all display areas*)

20.3 Controlling D splay Refresh

VWhen an application termnates or returns to the system
outer |loop for keyboard input, several internal versions of
the user word FREEZE are available to control the display,
and there is a word that ensures that certain display or al
di splay areas will be redrawn:

Set DA1Tenp Freeze display area 1

Set DA2aTenp Freeze display area 2a

Set DA2bTenp Freeze display area 2b

Set DA3Tenp Freeze display area 3

Set DAsTenp Freeze all display areas

d r DAsCK Redraw the entire | cd when program ends
There are still nore variations on this theme - see the

chapter "Keyboard I nput"” for nore.

Page 96

20.4 dearing the Display

The following words may be used to clear either the whole
di splay or a portion of HARDBUFF. Renenber that HARDBUFF
refers to the currently displayed grob, which is either the
text grob or the graph grob.

BLANKI T (#startrow #rows -->)

Clears #rows starting at #startrow
Bl ankDA12 (-->)

Clears rows O through 56
Bl ank DA2 (-->)

Clears rows 16 through 56
CLEARVDI SP (-->)

Zeros out all of HARDBUFF
ari6 (-->)

Clears top 16 pixel rows
ars8 (-->)

Clears top 8 pixel rows
ar8-15 (-->)

Cl ears pixel rows 8-15

20.5 Annunci ator Control

The following words control the left-shift, right-shift, and
al pha annunciators. It is unlikely that an application
shoul d have to control these directly, and m suse of these
words can |lead to m sl eading displays after an application
term nates.

d r Al phaAnn Cl ears the al pha annunci at or

C rLeft Ann Clears the left-shift annunci ator
d rR ght Ann Clears the right-shift annunci ator
Set Al phaAnn Sets the al pha annunci at or

Set Lef t Ann Sets the left-shift annunciator
Set Ri ght Ann Sets the right-shift annunci at or

Page 97

20.6 Display Coordi nates

The upper-left pixel of the display has the coordi nates x=0
y=0, which are the sane as user pixel coordinates { #0 #0 }.
The | ower-right pixel coordinate is x=130 y=63.

NOTE: subgrobs are taken fromthe upper-left coordinate to
the pixel below and to the right of the |ower right corner.
The termnms #x1 and #yl refer to the upperleft pixel of a sub
area, while #x2 and #y2 refer to the pixel below and the
right of the I ower right corner.

{ #0 #0 } +-----mmm e +
{#x1 #y1l} |*

| |
| |
| GOR +----+ |
| coordinate|* | |
| | | |
| oot |
| * Subgrob |
| coordi nate |
| |
| |

<- { #130 #63 }

* < { #x2 #y2 }

20.6.1 Wndow Coordi nates

The followi ng routines return HARDBUFF and coordi nates for
portions of the display in a formsuitable for a subsequent
call to SUBGROB. The ternms #x1 and #yl refer to the upper
left corner of the wi ndow on the currently displayed grob.
If the grob has been scrolled, these will NOT be #0 #O!

I f HARDBUFF has been scrolled, sonme display words may not be
appropriate to use since they depend on the upper |eft
corner of the display being #0 #0. The LCD is then called
the "wi ndow', and the ternms #x1 and #yl will refer to the

pi xel coordi nates of the upper left corner of the w ndow.
The word HBUFF_X Y returns HARDBUFF and these wi ndow

coordi nates. The word W NDOACORNER returns just the w ndow
coordi nates. The words DI SPROM* and DI SPROA2* nenti oned
bel ow work rel ative to the w ndow corner.

Rows8- 15 (--> HBgrob #x1 #yl1+8 #x1+131 #y1+16)
TOP16 (--> HBgrob #x1 #yl #x1+131 #y1+16)
TOP8 (--> HBgrob #x1 #yl #x1+131 #y1+8)

W NDOWNCORNER (--> #x #y)

Returns pi xel nunbers of upperleft corner
of the wi ndow

Page 98

The word Savel6 calls TOP16 and SUBGROB to produce a grob
consisting of the top 16 rows of the current display:

Savel6 (-->grob)

Equi val ent words that save the top eight rows or rows 8-15
are not in the HP 48, but can be witten as foll ows:

TOP8 SUBGRB ; (--> grob) (*Saves the top 8 rows*)
TOP8-15 SUBGROB ; (--> grob) (*Saves the top 8-15 rows*)

20.7 Displaying Text

There are three fonts available in the HP 48, distingui shed
by size. The snmallest font is variable width; the nedium
and large fonts are fixed w dth.

The words descri bed bel ow di splay text using the nmedi um and
large fonts in specific areas. Use of the small fonts, and
ot her placenment options for the nmediumand | arge fonts nust
be done in graphics, which is described later.

20.7.1 Standard_Text Di spl ay_Areas

VWhen the text grob is the current display AND has not been
scrolled, the followi ng words may be used to display text in
t he medi um (5x7) font. Long strings are truncated to 22
characters with a trailing ellipsis (...), and strings
shorter than 22 characters are blank fill ed.

DI SPROM ($-->)
DI SPRON2 ($-->)
DI SPRO/B ($-->)
DI SPROM ($-->)
DI SPROMG ($-->)
DI SPROMG ($-->)
DI SPROW ($-->)
DI SPN (% #row -->)
DI SP5x7 ($ #start #nmax)
(0,0) (130, 0)
DI SPROM wites into R +
e .
(0,7) (130, 7)
(0,8) (130, 8)
DI SPRON wites into R +
e .
(0, 15) (130, 15)

(etc.)

Page 99

The word DI SP5x7 may be used to display a string that spans
nmore than one line of the display. The string nust have
enbedded carriage returns to show where to break to the next
display line. |If a line segnent is greater than 22
characters, it will be truncated and displayed with a
trailing ellipsis (...). The string is displayed starting
at row #start for #max rows.

The following words may be used to display text in the |arge
(5x9) font. Long strings are truncated to 22 characters
with a trailing ellipsis (...), and strings shorter than 22
characters are blank filled.

Bl GDI SPROM (% -->)
Bl GDI SPROVW? (% -->)
Bl GDI SPROVB (% -->)
Bl GDI SPROWM (% -->)
Bl GDI SPN (% #row-->)
(0,17) (130, 0)
Bl GOl SPROM wites into I +
| |
S +
(0, 26) (130, 26)
(0, 27) (130, 27)
Bl GDl SPROAR wites into I +
| |
S +
(0, 36) (130, 36)

(etc.)

Page 100

20.7.2 Tenporary_Messages

Sonetimes it is convenient to display a warning, then return
the display to its previous state. There are severa

techni ques and tools available for this. The easiest way to
do this is with the word Fl ashWarni ng. The code for

Fl ashWarni ng | ooks |ike this:

FI ashWar ni ng ($-->)
ERRBEEP (*Generate an error beep*)
Savel6 (*Save the top 16 pixel rows*)
SWAP DI SPSTATUS2 (*Display the warni ng*)
VERYVERYSLOW (*Wait about 3 seconds*)
Rest orel6 (*Restore the top 16 rows*)

Vari ati ons on Fl ashWarni ng can be constructed usi ng words

i ke TOP16 or a version suggested above that saves fewer
rows. The exanpl e bel ow saves the top 8 rows and di spl ays a
one |ine nessage for about .6 second:

TOP8 SUBGROB

SWAP DI SPROM *
VERYSLOW VERYSLOW
Rest or e8

Save the top 8 rows)
Di spl ay the nmessage)
Short del ay)

Restore the top 8 rows)

e Y Y Y

NOTE: It is inportant to use DI SPROAM* and DI SPROA2* i nstead
of DI SPROM and DI SPROA if there is any chance that
HARDBUFF has been scrolled. There are no corresponding
words for other display |ines.

Page 101

20.8 G aphics bjects

The followi ng section presents tools for creating,
mani pul ati ng, and di spl ayi ng graphi cs objects.

20.8.1 \Warnings

Here are two warni ngs:

1

The term "bang-type operation” refers to an operation
performed directly upon an object w thout making a
copy. The nami ng convention for words which perform
this kind of operation often have an exclamati on poi nt
to denote a "bang" operation, such as GROB! or

GROB! ZERO.

You must renenber two things when using "bang"
operations:

+ Since the object itself is nodified, any pointers
on the stack that refer to that object will now
point to a changed object. The word CKREF may be
used to ensure that an object is unique.

+ These operations have no error checking, so
i mproper or out-of-range paranmeters may corrupt
menory beyond recovery.

In practice, it is best to use the word XYGROBDI SP to
pl ace a grob into the display grob. The word
XYGROBDI SP i s conservative in nature - if the graphic
to be placed i n HARDBUFF woul d exceed the boundari es
of HARDBUFF, the HARDBUFF grob is enlarged to
acconodat e the new grob.

Page 102

20.8.2 Gaphics_Tool s

The foll owi ng words create or

$>Bl GGROB
$>GROB
$>gr ob
DOLCD>
GROB!

GROB! ZERO

GROB! ZERCDRP

GROB>@GDI SP
HARDBUFF

HEI GHTENGROB
I NVGROB

LI NECFF
LI NEOFF3
L1 NEON
LI NEON3
MAKEGRCB
ORDERXY#
Pl XOFF
Pl XOFF3
Pl XON

Pl XON?
Pl XON?3

Pl XON3

SUBGROB
Synb>HBuf f

(
(
(
(
(

nodi fy graphi cs objects:

$ -->grob) (5x9 font)
$ -->grob) (5x7 font)
$ -->grob) (3x7 font)

--> 64x131grob)

grobl grob2 #col #row -->)

Stores grobl into grob2. This is a
bang-type word with no error checks!
grob #x1 #yl #x2 #y2 --> grob')

Zeros out a rectangul ar section of a
grob. NOTE: Bang-type operation

grob #x1 #yl #x2 #y2 -->)

Zeros out a rectangul ar section of a
grob. NOTE: Bang-type operation

grob -->)

Stores graph grob with new grob

--> HBgrob (the current display grob))
grob #rows -->)

Adds #rows to grob, unless grob is null.
NOTE: Assunes text grob or graph grob
grob --> grob')

Invert grob data bits -
#x1 #y1l #x2 #y2 -->)
Clears pixels in aline in text grob
Not e: #x2 must be > #x1 (use ORDERXY#)
#x1 #y1l #x2 #y2 -->)

Clears pixels in a line in graph grob
Not e: #x2 must be > #x1 (use ORDERXY#)
#x1 #y1l #x2 #y2 -->)

Sets pixels in aline in text grob
Not e: #x2 must be > #x1 (use ORDERXY#)
#x1 #y1l #x2 #y2 -->)

Sets pixels in a line in graph grob
Not e: #x2 must be > #x1 (use ORDERXY#)
#hei ght #width --> grob)

#x1 #yl #x2 #y2 --> #x1 #yl #x2 #y2)
Orders two points for |line draw ng

bang-t ype.

#X #y -->)
Clears a pixel in the text grob
#X #y -->)
Clears a pixel in the graph grob
#X #y -->)

Sets a pixel in the text grob
#x #y --> flag)

Returns TRUE if text grob pixel is set
#x #y --> flag)
Returns TRUE if graph grob pixel is set

#X #y -->)

Sets a pixel in the graph grob

grob #x1 #yl #x2 #y2 --> subgrob)
symb -->)

Di spl ays synb i n HARDBUFF i n Equati on-
Witer form May enl arge HARDBUFF, so
do RECLAI MDI SP aft erwards.

Page 103

TOGLI NE

TOGLI NE3

NOTE: #x2 nust

be greater

(#x1 #yl #x2 #y2 -->)

Toggles pixels in aline in text grob

(#x1 #yl #x2 #y2 -->)

Toggl es pixels in a line in graph grob

than #x1 for

20.8.3 G ob_D nensions

[ine draw ng!

The following words return or verify size information:

CKGROBFI TS

DUPGROBDI M
GBUFFGROBDI M

(grobl grob2 #n #m-->
Truncates grob2 if it

(grob --> grob #hei ght

(--> #height #width)
Ret urns di mensi ons of

grobl grob2' #n #m)
doesn't fit in grobl
#wi dth)

graph grob

GROBDI M (
GROBDI M (

grob --> #height #w dth)
grob --> #width)
20.8.4 Built-in_Gobs

The following words refer to built-in grobs:

Bi gCur sor 5x9 Cursor (outline box)
CROSSGROB 5x5 "+" synbol

CURSOR1 5x9 Insert Cursor (arrow)
CURSOR2 5x9 Repl ace Cursor (solid box)
MARKGROB 5x5 " X' synbol

Medi untCur sor 5x7 Cursor (outline box)

Smal | Cur sor 3x5 Cursor (outline box)

Page 104

20.8.5 Menu_Display Uilities

Menu | abel s are grobs which are 8 rows high and 21 pixels
wi de. The colums for menu key | abels in HARDBUFF2 are:

ZERO Softkey 1
TVENTYTWO Sof t key 2
0002C Sof t key 3
00042 Sof t key 4
00058 Sof t key 5
0006E Sof t key 6

The routine D spMenu.1 redisplays the current nmenu; the
routi ne Di spMenu redi splays the current nmenu and al so calls
Set DA3Valid to "freeze" the nenu display |ine.

The foll owi ng words convert objects to nenu | abels and
di splay the | abels at the given colum nunber:

G ob>Menu (#col 8x21grob -->)
Di spl ays an 8x21 (only!) grob
| d>Menu (#col Id -->)

Recal s 1d and di spl ays standard | abel
or directory | abel, depending on the
contents of Id.
Seco>Menu (#col seco -->)
Eval uat es secondary and uses result to
produce and display appropriate nmenu | abel
St r>Menu (#col $ -->)
Makes and di spl ays standard nenu | abel

The foll owi ng words convert strings to the different Kkinds
of avail abl e menu key grobs:

MakeBoxLabel () Box with bullet in it
MakeDi r Label (%) Box with directory bar
Makel nvLabel ($-->9grob) Wite |label (solver)
MakeSt dLabel (%) Black | abel (standard)
20.9 Scrolling the D splay

The following words are avail able for scrolling the display:

SCROLLDOMN (*Scroll down one pixel with repeat*)
SCROLLLEFT (*Scroll left one pixel with repeat*)
SCROLLRI GHT (*Scroll right one pixel with repeat*)
SCROLLUP (*Scroll up one pixel with repeat*)

JUMPBOT (*Move wi ndow to bottom edge of grob*)
JUMPLEFT (*Move window to | eft edge of grob*)

JUMPRI GHT (*Move window to right edge of grob*)
JUMPTCOP (*Move wi ndow to bottom edge of grob*)

The SCROLL* words test to see if their correspondi ng arrow
key is being held down, and repeat their action until the

Page 105

edge of the grob is reached or the key rel eased.
The example below illustrates a series of graphics

operations and the use of a Paraneterized Quter Loop which
provi des scrolling for the user.

I ncl ude the header file KEYDEFS.H, which defines words
i ke kcUpArrow at physical key nunbers.

E R

I NCLUDE KEYDEFS. H
*

* I nclude the eight characters needed for binary downl oad
*

ASSEMBLE

NI BASC [/ HPHP48- DY
RPL
*

* Begin the secondary
*

' RECLAI MDI SP

(*daimthe al pha display*)
C r DAll sSt at (*Tenporarily disable clock*)
* (*Try rermoving ClrDAllsStat*)
ZERQZERO (#0 #0)
150 150 MAKEGROB (#0 #0 150x150grob)
XYGROBDI SP (
TURNVENUOFF (*Turn off nenu line*)

*
* Draw di agonal lines. Renmenber that LINEON requires
* requires #x2>#x1!
*
ZERQZERO (#x1 #yl)
149 149 (#x1 #yl #x2 #y2)
LI NEON (*Draw line*)
ZERO 149 (#x1 #yl)
149 ZERO (#x1 #yl #x2 #y2)
LI NEON (*Draw line*)

* Pl ace text

HARDBUFF

75 50 "SCROLLI NG' HBgrob 75 150 "SCRCOLLI NG')

150 CENTER$3x5 HBgr ob)
75 100 " EXAMPLE" HBgrob 75 100 "EXAMPLE")
150 CENTER$3x5 HBgr ob)
DROPFALSE FALSE)

Bind POL exit flag)
No di splay action)
Hard key handl er)

{ LAMExit } BIND
' NOP

NSNS AN AN AN AN

i(bNoShi ft #=casedrop

kcUpAr r ow ?CaseKeyDef
TakeOver SCROLLUP ;

Page 106

kcLeft Arrow ?CaseKeyDef
.. TakeOver SCROLLLEFT ;
kcDownArrow ?CaseKeyDef
.. TakeOver SCRCOLLDOMN ;
kcRi ght Arrow ?CaseKeyDef
. TakeOver SCRCLLRI GHT ;
kcOn ?CaseKeyDef
TakeOver
TRUE ' LAM Exit STO ;
kcRi ght Shi ft #=casedrpfls
DROP ' DoBadKeyT

kp'Ri ght Shi ft #=casedr op

kcUpAr r ow ?CaseKeyDef

.. TakeOver JUMPTOP ;
kcLeft Arrow ?CaseKeyDef

.. TakeOver JUMPLEFT ;
kcDownArrow ?CaseKeyDef

. TakeOver JUMPBOT ;
kcRi ght Arrow ?CaseKeyDef

.. TakeOver JUMPRI GHT ;
kcRi ght Shift #=casedrpfls
DROP ' DoBadKeyT

2DROP ' DoBadKey T

TrueTrue

(*Key control flags*)
NULL{} (*No softkeys here*)
ONEFALSE (*1st row, no suspend*)
" LAM Exi t (*App exit condition*)
' ERRIMP (*Error handler*)
Par Qut er Loop (*Run the ParCuterLoop*)
TURNVENUON (*Restore menu row)
RECLAI MDI SP (*Resize and clear display*)

Page 107

The above code, if stored in a file SCROLL.S, can be
conpil ed as foll ows:

RPLCOVPI LE SCRCLL. S
SASM SCRCOLL. A
SLOAD -H SCROLL. M

This exanple also assunes that the file KEYDEFS.H is either
in the same directory or the source file has been nodified
to reflect the |location of KEYDEFS.H. The | oader control
file SCROLL. M | ooks like this:

QU SCRALL

LL SCRCLL. LR
SU XR

SE ENTRI ES. O
RE SCRCLL. O

The final file, SCROLL, may be binary downl oaded to the
HP 48 for a test.

VWhen SCROLL is running, the arrow keys scroll the display,
and the right-shifted arrow keys nove the wi ndow to the
correspondi ng boundary. The [ATTN] key term nates the

pr ogr am

For nmore details on the ParCQuterLoop, see the chapter
"Keyboard Control"

Page 108

21. Keyboard Control
A program that requires keyboard i nput fromthe user may

choose fromthree basic techniques available with interna
RPL, listed in order of increasing conplexity:

1. Wit for an individual keystroke, then decide what to
do with it.
2. Call the internal formof |INPUT

3. Set up a Paraneterized Quter Loop to control an entire
application environment.

The foll owi ng sections discuss the internal nunbering schene
for keys and each of the above three key processing
strat egi es.

21.1 Key Locations

The user word WAIT returns a real nunmber which is encoded in
the formrc.p, where:

The row of the key

(@]
(L]

The col um of the key

p The shift pl ane.
e e oo o RS e +
| p | Primary Planes | p | Al pha Pl anes
e e oo o RS e +
| Oor 1| Unshifted | 4| Al pha
| 2 | Left-shifted | 5] A pha left-shifted
| 3 | Right-shifted | 6 | Al pha right-shifted
e e oo o RS e +

Internally, key locations are represented with two binary
i ntegers: #KeyCode, which defines a physical key, and
#Pl ane, which defines the shift plane.

The file KEYDEFS.H, supplied with the RPL conpiler, defines
the following ternms for key pl anes:

DEFI NE kpNoShi ft ONE
DEFI NE kpLeft Shi ft TVWO
DEFI NE kpRi ght Shi f t THREE
DEFI NE kpANoShi ft FOUR
DEFI NE kpALef t Shi ft FI VE
DEFI NE kpARi ght Shf t SI X

Page 109

Keys are nunbered internally from1l to 49, starting at the
upper left corner of the keyboard. Primary key definitions
are also provided in KEYDEFS.H Here are a few of them

DEFI NE kcMenuKeyl ONE

DEFI NE kcMenuKey?2 TWO

DEFI NE kcMenuKey3 THREE
DEFI NE kcMenuKey4 FOUR

DEFI NE kcMenuKey5 FI VE

DEFI NE kcMenuKey6 SI X

DEFI NE kcMat hMenu SEVEN
DEFI NE kcPrgmivenu El GHT

DEFI NE kcCust omVenu NI NE

DEFI NE KcPl us FORTYNI NE

The use of these definitions in source code is encouraged
for legibility.

The transl ati on between internal key nunbering and rc.p
nunbering may be carried out with two words:

Ck&DecKeyLoc (%c.p --> #KeyCode #Pl ane)
CodePl >% c. p (#KeyCode #Plane --> %c.p)

21.2 Waiting for a Key

If an application needs to wait for a single key, such as a
yes-no-attn type decision, it is best to use the word

Wit For Key, which returns a fully formed keystroke.

Wit For Key al so keeps the HP 48 in a | ow power state until a
key is pressed and handl es the al pha and shift annunciators
and al ar m processi ng.

The foll owi ng words are avail abl e:

CHECKKEY (--> #KeyCode TRUE)
(--> FALSE)
Returns, but does not pop, the next
key in the buffer.

FLUSHKEYS (-->)
Flush the key buffer.
GETTOUCH (--> #KeyCode TRUE)

(--> FALSE)
Pops next key from buffer.
KEYI NBUFFER? (--> FLAG)
Returns TRUE if a key is in the buffer,
ot herwi se returns FALSE.

ATTN? (-->flag)
Returns TRUE if [ATTN] has been pressed
ATTNFLGCLR (-->)

Clears the attn key flag (does not
flush attn key from buffer)

Wi t For Key (--> #KeyCode #Pl ane)
Returns next fully formed keystroke.

Page 110

21.3 InputlLine

The word InputLine is the core of the user word I NPUT as

well as the

prompt for equation names (NEW. InputlLine does

the foll ow ng:

+ Di spl ays

+

Sets the

+

the pronpt in display area 2a,

keyboard entry nodes,

Initializes the edit |ine,

+ Accepts user input until [ENTER] is either explicitly or
inmplicitly pressed,

+

i ne,

Parses, evaluates, or just returns the user-input edit

+ Returns TRUE if exited by Enter or FALSE if aborted by

Attn.

The stack on entry nust contain the foll ow ng:

$Pr onpt
$Edi t Li ne
Cur sor Pos

#1 ns/ Rep

#Entry

#Al phalLock

| LMenu

#1 LMenuRow

At t nAbort ?

#Par se

The pronmpt to be displayed during user input

The initial edit line

The initial edit Iine cursor position, specified
as a binary integer character nunber or a two-
element list of binary integer row and col um
nunbers. For all nunbers, #0 indicates the end
of the edit line, row, or colum.

The initial insert/replace node:

#0 current insert/replace node
#1 i nsert node
#2 repl ace node
The initial entry node:
#0 current entry node plus programentry

#1 program i medi ate entry
#2 program al gebraic entry
The initial al pha-1ock node:
#0 current al pha | ock node
#1 al pha | ock enabl ed
#2 al pha | ock di sabl ed
The initial InputLine nmenu in the fornat
speci fied by "ParQuterLoop"”
The initial InputLine nmenu row nunber in the
format specified by "ParQuterLoop"
A flag specifying whether pressing Attn while
a non-null edit |ine exists should abort
"I nputLine” (TRUE) or just clear the edit
i ne (FALSE)
How to process the resulting edit |ine:
#0 Return the edit line as a string
#1 Return the edit line as a string AND
as a parsed object
#2 Parse and evaluate the edit line

Page 111

InputLine returns different results, depending on the
initial value of #Parse:

#Parse Stack Descri ption
#0 $Edi t Li ne TRUE Edit line
#1 $EditLine ob TRUE Edit line and parsed edit line
#2 1l ... bn TRUE Resulting object or objects
FALSE Attn pressed to abort edit

21.3.1 Inputline_Exanple
The exanmple call to InputLine shown bel ow pronpts the user
for a variable nane. If the user enters a valid nane, the
nane and TRUE are returned, otherw se FALSE is returned.

(--> O TRUE | FALSE)

"Enter nane:" *Pronpt string*)

(
NULLS$ (*No default nane*)
ONEONE (*Initial edit line & cursor pos*)
ONEONE (*I'nsert node & prog/inmed. entry*)
NULL{} (*No edit menu*)
ONE (*Menu row)
FALSE (*Attn clears edit line*)
ONE (*Return edit line and parsed ob*)
| nput Li ne (($editline ob TRUE) | (FALSE))
NOTcaseFALSE (*Exit if Attn pressed*)
SWAP NULL$? (*Exit if blank edit line*)

casedrop FALSE

DUPTYPEI DNT? (*Check if ob is id*)
caseTRUE (*Yes, exit true*)
DROPFALSE (*No, drop ob and FALSE*)

Page 112

21.4 The Paraneterized CQuter Loop

In this section, the term"paraneterized outer |oop"” is used
to refer to a usage of the RPL word "ParQuterLoop”, or a
conbi ned usage of its fundanental conponent utilities
(described below), all of which can be envisioned as words
that take over the keyboard and display until a specified
condition is net.

The paraneterized outer |oop, "ParCQuterlLoop”, takes nine
argunents, in order:

AppDi spl ay The display update object to be eval uated
bef ore each key eval uation. "AppDi splay"
shoul d handl e di spl ay updating not handl ed by
t he keys thensel ves, and should al so perform
speci al handling of errors.

AppKeys The hard key assignnents, a secondary object in
the format descri bed bel ow

NonAppKey(K? A flag specifying whether the hard keys not
assigned by the application should perform
their default actions or be cancel ed.

DoSt dKeys? A flag used in conjunction with "NonAppKeyOK?"
speci fyi ng whet her standard key definitions are
to be used for non-application keys instead of
default key processing.

AppMenu The menu key specification, a secondary or |ist
in the format specified in the nenu key
assi gnnments docunent, or FALSE

#AppMenuRow The initial application menu row nunber. For
nost applications, this should be binary
i nt eger one.

SuspendOK? A flag speci fying whet her or not any user
command that would create a suspended
environnent and restart the systemouter |oop
shoul d i nstead generate an error

Exit Cond An object that evaluates to TRUE when the outer
loop is to be exited, or FALSE ot herw se.
"Exit Cond" is evaluated before each application
di spl ay update and key eval uati on

AppError The error-handling object to be evaluated if an
error occurs during the key eval uation part of
the paraneterized outer |oop

The paraneterized outer loop itself returns no results.

However, any of the keys used by the application can return
results to the data stack or in any manner desired.

Page 113

21.4.1 The_Paraneterized _Quter_ Loop_Utilities

The paraneterized outer |oop word "ParQuterLoop" consists
entirely of calls (with proper error handling) to its four
RPL utility words, in order:

POLSaveU Saves the current user interface in a tenporary
environnent. Takes no argunments and returns no
results.

POLSet U Sets the current user interface according to
the sane paraneters required by "ParQuterlLoop”.
Returns no results.

POLKeyUl Displays, reads and eval uates keys, handl es
errors, and exits according to the user
interface specified by "POLSetUl ". Takes no
argunments and returns no results.

POLRestoreU Restores the user interface saved by
"POLSaveU " and abandons the tenporary
environnent. Takes no argunments and returns no
results.

(I'n addition to the four utilities above. utility
"POLResU &Err" is used to protect the saved user interface
in the event of an error that's not handled w thin the
paraneterized outer |oop. Refer to "Paraneterized Quter
Loop Operation"” and "Handling Errors with the Utilities",
bel ow.)

These utilities can be used by applications that require
greater control over the user interface. For exanple:

+ For optimum perfornmance an application can create a
tenmporary environnent with null-named tenporary
variables after calling "PO.SaveU ", then access the
nul | - naned variables "within" "POLKeyU ", since only
"POLSaveUl " creates a paraneterized outer |oop
tenmporary environnment and only "POLRestoreUl " accesses
the sane environnent.

+ To avoi d unnecessary and time-consum ng overhead, an
application that uses nultiple consecutive (not nested)
paraneterized outer |oops can call "PO.SaveU " at the
start of the application, then call "PO.SetU" and
"POLKeyU " multiple tinmes throughout the application,
then finally call "PO.RestoreU " at the end of the
application.

Page 114

21.4.2 OQverview of _the_Paraneterized_Quter_Loop
The paraneterized outer | oop operates as outlined bel ow

("POLSaveU ")
Save the systemor current application's
user interface

If error in

("POLSetU ")
Set the new application's user interface

(" POLKeyU ")
VWil e "ExitCond" evaluates to FALSE {
Eval uate "AppDi spl ay”
If error in
Read and eval uate a key
Then
Eval uate " AppError”

}
Then

Restore the saved user interface and
ERRIMP

("POLRestoreu ")
Restore the saved user interface

The paraneterized outer |oop creates one tenporary

envi ronnent when it saves the current user interface, and it
abandons this environment when it restores a saved user
interface. This means that words that operate on the
topnost tenporary environment, such as "1GETLAM', shoul d NOT
be used "within" the paraneterized outer loop (e.g., in a
key definition or the application display update object)
UNLESS the desired tenporary environnent is created AFTER
calling "PO.SaveU " and abandoned before calling
"POLRestoreUl ". For tenporary environnents created before
calling the paraneterized outer |oop, applications should
set up and operate on NAMED tenporary vari abl es.

Page 115

21.4.3 Handling Errors_ with_ the Uilities

To insure that it can properly restore a saved user
interface if an error occurs within an application, the
paraneterized outer |oop protects the saved user interface
by setting an error trap imediately after its call to
"POLSaveU ", as shown bel ow

.F(LSaveUI (save the current user interface)
ERRSET (prepare to restore saved user interface
in case of error)

..F(LSetUI (set the application's user interface)
POLKey Ul (display, read, and evaluate)
ERhTRAP (if error, then restore the saved

user interface and error)
PCOLResUl &Er r
POLRest or eUl (restore the saved user interface)

The purpose of supported utility "POLResU &Err" is to
restore the user interface saved by "POLSaveU " and then to
error.

Any applications that use the paraneterized outer |oop
utilities instead of "ParCQuterLoop"” are REQU RED to include
this same |level of error handling protection of the saved
user interface.

21.4.4 The_Di spl ay

There is no default display in the paraneterized outer |oop
the application is responsible for setting up the initial
di splay and updating it.

There are two ways that an application can update the

di splay: with outer |oop paraneter "AppD splay” or with key
assignments. For exanple, if the user presses the right-
arrow key to nove a highlight fromone matrix colum to
anot her, the key assignment for the right-arrow key can
either pass information to "AppD splay" (often inplicitly)
to handl e the change, or the key assignnment object can
change the display itself. Both nethods have advant ages
under different circunstances.

Page 116

21.4.5 Error_Handling

The error-handling outer | oop paraneter "AppError" is
responsi bl e for processing any errors generated during key
evaluation within the parameterized outer loop. If an error
occurs, "AppError" is evaluated. "AppError" should
determ ne the specific error and act accordingly. If an
application can not handle any errors, then "AppError"
shoul d be specified as "ERRIMP"

21.4.6 Hard_Key_ Assignnents

Any HP 48 key, in any of the six planes (unshifted, left-
shifted, right-shifted, al pha-unshifted, al pha-left-shifted,
and al pha-right-shifted) can be assigned for the duration of
the paraneterized outer |oop. The outer |oop paraneter

" AppKeys" specifies the keys to assign and their new

assi gnment s.

If a key is not assigned by an application, and outer |oop
par amet er " NonAppKeyOK?" is TRUE, then standard or default
key processing occurs, according to outer | oop paraneter
"DoSt dKeys?". For exanple, if user keys node is on and the
key has a user key assignnent, then the user key is
processed if "DoStdKeys?" is FALSE, or the standard key is
processed if "DoStdKeys?" is TRUE. |If "NonAppKeyOK?" is
FALSE, then all non-application keys issue a cancel ed key
war ni ng beep and do not hi ng el se.

In general, NonAppKeyOK? should be FALSE to maintain tota
control

Page 117

Application key assignments are specified by the secondary
obj ect " AppKeys" passed to the paraneterized outer |oop
The procedure nust take as its argunents a key code and a
pl ane specification, and nust return the desired key
definition and TRUE if the application defines the key, or
FALSE if the application doesn't. Specifically, the key
assi gnment procedure's stack diagram nmust | ook |ike this:

(#KeyCode #Pl ane --> KeyDef TRUE)
(#KeyCode #Pl ane --> FALSE)

The key definition result "KeyDef" will be processed by the
mai n key handl er, "DoKeyQh".

Application key assignments specified as procedures
generally have logic in the form

If #Plane is NoShift (or first plane of interest)

Then
Process #KeyCode in the unshifted pl ane
El se
If #Plane is LeftShift (or next plane of interest)
Then

Process #KeyCode in the left-shifted pl ane
El se signal no definition
This can be inplemented in RPL in the form
kpNoShi ft #=casedrop :: (process noshift plane)

kpLeft Shift #=casedrop :: (process |-shift plane)
2DRCOP FALSE

Each pl ane handl er generally has logic in the form

I f #KeyCode is 7 (or first key code of interest)

Then
Return the key code 7 definition and TRUE

El se
I f #KeyCode is 20 (or next key code of interest)
Then

Return the key code 20 definition and TRUE
El se signal no definition

This can be inplenmented in RPL in the following form

kchvat hMenu ?CaseKeyDef :: TakeOver (process MIH)

kcTan ?CaseKeyDef :: TakeOver (process TAN) ;
(all other keys)
DROP FALSE

Page 118

In order to save code and to nake key definitions nore
readabl e, the control structure word "?CaseKeyDef" repl aces
t he

#=casedrop :: ' <KeyDef> TRUE ;
portions of code with
?CaseKeyDef <KeyDef >
More specifically, "?CaseKeyDef" is used in the form
#KeyCode #Test KeyCode ?CaseKeyDef <KeyDef> ..

I f "#KeyCode" equal s "#Test KeyCode", then "?CaseKeyDef"
drops "#KeyCode" and "#Test KeyCode", pushes "KeyDef" and
TRUE, and exits the calling secondary. herw se,
"?CaseKeyDef" drops "#Test KeyCode" only, skips "KeyDef", and
cont i nues.

21.4.7 Menu_Key_Assi gnnents

An application can specify any initial nenu key assignnents,
in any of three planes (unshifted, left-shifted, and right-
shifted), to be initialized when the paraneterized outer
loop is started. The outer |oop paranmeter "AppMenu"
specifies the initialization object (a list or secondary)
for the application's nmenu, or FALSE, indicating that the
current menu is to be left intact. Wen the paraneterized
outer loop is exited, the previous nenu is restored

aut omati cal ly.

If "AppMenu" is a null list, then a set of six null nenu key
assignments are nmade. |If "AppMenu" is FALSE, then the menu
present when the paraneterized outer loop is called is

mai nt ai ned.

NOTE: hard key assignnments have priority over nenu key
assignnments. This nmeans that the hard key handl er nust
include the following line if menu keys are to be processed:
DUP#<7 casedrpfls
The paraneter AppMenu takes the followi ng form
Menu Key 1 Definition
Menu Key 2 Definition

hkhQ.Key n Definition
}

VWere each nmenu key definition takes one of three
foll owi ng forns:

Page 119

Nul | MenuKey

{ Label Ovj :: TakeCOver (Action) ; }

{ Label Onj {
TakeOver (Primary Action) ;
TakeOver (LeftShifted Action) ;
}
{ Label Onj {
TakeOver (Primary Action) ;
TakeOver (LfShifted Action) ;
TakeOver (Rt Shifted Action) ;
}
}
A Label bj may be any object, but is usually a string or an
8x21 grob. See the exanple below for an illustration of

softkey use. The word Nul |l MenuKey inserts a bl ank nmenu key
whi ch just beeps when pressed.

21.4.8 Preventing_Suspended_Environnents

An application may need to allow arbitrary conmmands and user
objects to be evaluated, but don't want the current
environnent to be suspended by the "HALT" or "PROWPT"
commands. |If the outer |oop paraneter "SuspendOK?" is
FALSE, then any conmand that woul d suspend the environnent
generates a "HALT not Al lowed" error, allow ng "AppError” to
handle it. |[If "SuspendOK?" is TRUE, then the application
nmust be prepared to handl e the consequences. The dangers
here are many and severe.

For all foreseeable applications, "SuspendOK?" should be
FALSE.

21.4.9 Specifying_an_Exit_Condition

The outer |oop paraneter "ExitCond" is an object that

eval uates to TRUE when the outer loop is to exited, or FALSE

otherwi se. "ExitCond" is eval uated before each key
eval uati on.

Page 120

21.4.10 ParQuterLoop_ Exanpl e

I ncl ude the header file KEYDEFS.H, which defines words
i ke kcUpArrow at physical key nunbers.

* Ok X

I NCLUDE KEYDEFS. H
*

* I nclude the eight characters needed for binary downl oad
*

ASSEMBLE

NI BASC [/ HPHP48- DY
RPL
*

* Begin the secondary
*

' RECLAI MDI SP

(*daimthe al pha display*)
C r DAll sSt at (*Tenporarily disable clock*)
* (*Try rermoving ClrDAllsStat*)
ZERQZERO (#0 #0)
150 150 MAKEGROB (#0 #0 150x150grob)
XYGROBDI SP ()

*
* Draw di agonal lines. Renmenber that LINEON requires
* requires #x2>#x1!
*
ZERQZERO (#x1 #yl)
149 149 (#x1 #yl #x2 #y2)
LI NEON (*Draw line*)
ZERO 149 (#x1 #yl)
149 ZERO (#x1 #yl #x2 #y2)
LI NEON (*Draw line*)

* Pl ace text

HARDBUFF

75 50 "SCROLLI NG' HBgrob 75 150 "SCRCOLLI NG')

(
150 CENTER$3x5 (HBgrob)
75 100 " EXAMPLE" (HBgrob 75 100 "EXAMPLE")
150 CENTER$3x5 (HBgrob)
DROPFALSE (FALSE)
{ LAMExit } BIND (*Bind POL exit flag*)
" DispMenu. 1 (*Display Action shows nmenu*)

s *Hard key handl er*)
kpNoShi ft #=casedrop

DUP#<7 casedrpfls (*Enabl e softkeys*)
kcUpAr r ow ?CaseKeyDef
.. TakeOver SCROLLUP ;
kcLeft Arrow ?CaseKeyDef
.. TakeOver SCROLLLEFT ;
kcDownArrow ?CaseKeyDef
TakeOver SCROLLDOMN ;

Page 121

kcRi ght Arrow ?CaseKeyDef
. TakeOver SCRCLLRI GHT ;
kcOn ?CaseKeyDef
TakeCOver
TRUE ' LAM Exit STO ;
kcRi ght Shi ft #=casedrpfls
DROP ' DoBadKeyT

2DROP ' DoBadKey T

TrueTrue (*Key control flags*)

{ "TOP" :: TakeOver JUWPTCP ; }

{ "BOT" :: TakeOver JUWPBOT ; }

{ "LEFT" :: TakeOver JUWPLEFT ; }

{ "RIGHT" :: TakeOver JUWPRIGHT ; }

Nul | MenuKey

{ "QUIT" :: TakeOver TRUE ' LAM Exit STO ; }
}
ONEFALSE (*1st row, no suspend*)
" LAM Exi t (*App exit condition*)
' ERRIMP (*Error handler*)
Par Qut er Loop (*Run the ParCuterLoop*)
RECLAI MDI SP (*Resize and clear display*)
Set DASBAD (*Redraw di spl ay*)

The above code, if stored in a file SCRSFKY.S, can be
conpil ed as foll ows:

RPLCOWPI LE SCRSFKY. S
SASM SCRSFKY. A
SLOAD - H SCRSFKY. M

Thi s exanple also assunes that the file KEYDEFS.H is either
in the same directory or the source file has been nodified
to reflect the location of KEYDEFS.H. The | oader control
file SCRSFKY.M | ooks like this:

QU SCRSFKY

LL SCRSFKY. LR
SU XR

SE ENTRI ES. O
RE SCRSFKY. O

The final file, SCRSFKY, may be binary downl oaded to the
HP 48 for a test.

VWhen SCRSFKY is running, the arrow keys scroll the display,
and the | abel ed softkeys nove the wi ndow to the

correspondi ng boundary. The [ATTN] key term nates the

pr ogr am

Page 122

22. System Commands

The foll owi ng words set,

condi tions or
ALARM?

At User St ack

CLKTI CKS

d r SysFl ag
A rUserFl ag
DATE
DOBEEP
DOBI N
DODEC
DOENG

DOFI X
DOHEX
DOCCT
DOSCl
DOSTD

DPRADI X?

SETDEG
SETGRAD
SETRAD

SLOW

TCD

Test SysFl ag
Test User Fl ag
VERYSLOW

VERYVERYSLOW

test, or control various system
nodes.
(-->flag)
Returns TRUE if an alarmis due
(-->)

Decl ares user ownership of all
on the stack.

--> hxs)

Returns 13 ni bble hex string reflecting

obj ects

t he nunber of ticks since 01/01/0000.
There are 8192 ticks per second.
#-->)

Clears systemflag from#1 to #64
#-->)

Clears user flag from#1 to #64

--> 9glate)

Returns real nunber date
% req Yduration -->)
BEEP conmand

__>)

Set base node to Bl Nary

__>)

Set base node to DEC nal

#-->)

Set ENG display with # (0-11) digits
#-->)

Set FIX display with # (0-11) digits
__>)

Set base node to HEXadeci nal

__>)

Set base node to COCTal

#-->)

Set SCI display with # (0-11) digits
__>)

Set STD di spl ay node

-->flag)

Returns TRUE if current radix is .

Returns FALSE if current radix is ,
__>)

Set DEGREES angl e node

__>)

Set GRADS angl e node

__>)

Set RADI ANS angl e node

__>)

15nsec del ay

--> %inme)

Returns tine of day in h.ns form

-->flag)

Returns TRUE if systemflag # is set
-->flag)

Returns TRUE if user flag # is set

__>)

300 nsec del ay

__>)

Page 123

3 sec del ay

WORDS| ZE (-->#)

Returns bi nary wordsi ze
dost ws (#-->)

Stores binary wordsi ze
dowai t (Y%seconds -->)

Waits for Y% econds in |ight sleep

Page 124

	Introduction
	RPL Principles
	Origins
	Mathematical Control
	Formal Definitions
	Execution
	EVAL
	Data_Class_Objects
	Identifier_Class_Objects
	Procedure_Class_Objects
	Object_Skipover_and_SEMI
	RPL_Pointers

	Memory Management
	User RPL and System RPL
	Programming in System RPL
	Sample RPL Program
	The_Source_File
	Compiling_the_Program

	Object Structures
	Object Types
	Identifier_Object
	Temporary_Identifier_Object
	ROM_Pointer_Object
	Binary_Integer_Object
	Real_Number_Object
	Extended_Real_Number_Object
	Complex_Number_Object
	Extended_Complex_Number_Object
	Array_Object
	Linked_Array_Object
	Character_String_Object
	Hex_String_Object
	Character_Object
	Unit_Object
	Code_Object
	Primitive_Code_Object
	Program_Object
	List_Object
	Symbolic_Object
	Directory_Object
	Graphics_Object

	Terminology and Abbreviations.

	Binary Integers
	Built-in Binary Integers
	Binary Integer Manipulation
	Arithmetic_Functions
	Conversion_Functions

	Character Constants
	Hex & Character Strings
	Character Strings
	Hex Strings

	Real Numbers
	Built-in Reals
	Real Number Functions

	Complex Numbers
	Built-in Complex Numbers
	Conversion Words
	Complex Functions

	Arrays
	Composite Objects
	Tagged Objects
	Unit Objects
	Temporary Variables and Temporary Environments
	Structure of the Temporary Environment Area
	Named vs. Unnamed Temporary Variables
	Provided Words for Temporary Variables
	Coding Suggestions

	Checking Arguments
	Number of Arguments
	Dispatching on Argument Type
	Examples

	Loop Control Structures
	Indefinite Loops
	Definite Loops
	Provided_Words
	Examples

	Error Generation & Trapping
	Trapping: ERRSET and ERRTRAP
	Action of ERRJMP
	The Protection Word
	Error Words

	Test and Control
	Flags and Tests
	General_Object_Tests
	Binary_Integer_Comparisons
	Decimal_Number_Tests

	Words that Operate on the Runstream
	If/Then/Else
	CASE words

	Stack Operations
	Memory Operations
	Temporary Memory
	Variables and Directories
	Directories

	The Hidden Directory
	Additional Memory Utilities

	Display Management & Graphics
	Display Organization
	Preparing the Display
	Controlling Display Refresh
	Clearing the Display
	Annunciator Control
	Display Coordinates
	Window_Coordinates

	Displaying Text
	Standard_Text_Display_Areas
	Temporary_Messages

	Graphics Objects
	Warnings
	Graphics_Tools
	Grob_Dimensions
	Built-in_Grobs
	Menu_Display_Utilities

	Scrolling the Display

	Keyboard Control
	Key Locations
	Waiting for a Key
	InputLine
	InputLine_Example

	The Parameterized Outer Loop
	The_Parameterized_Outer_Loop_Utilities
	Overview_of_the_Parameterized_Outer_Loop
	Handling_Errors_with_the_Utilities
	The_Display
	Error_Handling
	Hard_Key_Assignments
	Menu_Key_Assignments
	Preventing_Suspended_Environments
	Specifying_an_Exit_Condition
	ParOuterLoop_Example

	System Commands

