
                                 CONTENTS

        1.  Introduction......................................    1

        2.  RPL Principles....................................    2
            2.1   Origins.....................................    2
            2.2   Mathematical Control........................    3
            2.3   Formal Definitions .........................    5
            2.4   Execution...................................    6
                  2.4.1    EVAL...............................    8
                  2.4.2    Data Class Objects.................    9
                  2.4.3    Identifier Class Objects...........    9
                  2.4.4    Procedure Class Objects............   10
                  2.4.5    Object Skipover and SEMI...........   10
                  2.4.6    RPL Pointers.......................   11
            2.5   Memory Management...........................   11
            2.6   User RPL and System RPL.....................   13
            2.7   Programming in System RPL...................   14
            2.8   Sample RPL Program..........................   16
                  2.8.1    The Source File....................   16
                  2.8.2    Compiling the Program..............   18

        3.  Object Structures.................................   19
            3.1   Object Types................................   19
                  3.1.1    Identifier Object..................   19
                  3.1.2    Temporary Identifier Object........   19
                  3.1.3    ROM Pointer Object.................   20
                  3.1.4    Binary Integer Object..............   20
                  3.1.5    Real Number Object.................   20
                  3.1.6    Extended Real Number Object........   21
                  3.1.7    Complex Number Object..............   22
                  3.1.8    Extended Complex Number
                           Object.............................   22
                  3.1.9    Array Object.......................   23
                  3.1.10   Linked Array Object................   23
                  3.1.11   Character String Object............   25
                  3.1.12   Hex String Object..................   25
                  3.1.13   Character Object...................   25
                  3.1.14   Unit Object........................   26
                  3.1.15   Code Object........................   26
                  3.1.16   Primitive Code Object..............   27
                  3.1.17   Program Object.....................   27
                  3.1.18   List Object........................   28
                  3.1.19   Symbolic Object....................   28
                  3.1.20   Directory Object...................   29
                  3.1.21   Graphics Object....................   29
            3.2   Terminology and Abbreviations...............   30

        4.  Binary Integers...................................   32
            4.1   Built-in Binary Integers....................   32
            4.2   Binary Integer Manipulation.................   34
                  4.2.1    Arithmetic Functions...............   34
                  4.2.2    Conversion Functions...............   35

        5.  Character Constants...............................   36

        6.  Hex & Character Strings...........................   37

                                  - i -



            6.1   Character Strings...........................   37
            6.2   Hex Strings.................................   39

        7.  Real Numbers......................................   41
            7.1   Built-in Reals..............................   41
            7.2   Real Number Functions.......................   41

        8.  Complex Numbers...................................   46
            8.1   Built-in Complex Numbers....................   46
            8.2   Conversion Words............................   46
            8.3   Complex Functions...........................   46

        9.  Arrays............................................   48

       10.  Composite Objects.................................   49

       11.  Tagged Objects....................................   51

       12.  Unit Objects......................................   52

       13.  Temporary Variables and Temporary
            Environments......................................   54
            13.1  Structure of the Temporary Environment
                  Area........................................   55
            13.2  Named vs. Unnamed Temporary Variables.......   57
            13.3  Provided Words for Temporary Variables......   59
            13.4  Coding Suggestions..........................   60

       14.  Checking Arguments................................   61
            14.1  Number of Arguments.........................   62
            14.2  Dispatching on Argument Type................   63
            14.3  Examples....................................   66

       15.  Loop Control Structures...........................   68
            15.1  Indefinite Loops............................   68
            15.2  Definite Loops..............................   70
                  15.2.1   Provided Words.....................   70
                  15.2.2   Examples...........................   71

       16.  Error Generation & Trapping.......................   73
            16.1  Trapping: ERRSET and ERRTRAP................   73
            16.2  Action of ERRJMP............................   73
            16.3  The Protection Word.........................   74
            16.4  Error Words.................................   75

       17.  Test and Control..................................   76
            17.1  Flags and Tests.............................   76
                  17.1.1   General Object Tests...............   77
                  17.1.2   Binary Integer Comparisons.........   78
                  17.1.3   Decimal Number Tests...............   79
            17.2  Words that Operate on the Runstream.........   80
            17.3  If/Then/Else................................   83
            17.4  CASE words..................................   84

       18.  Stack Operations..................................   87

       19.  Memory Operations.................................   89
            19.1  Temporary Memory............................   89

                                  - ii -



            19.2  Variables and Directories...................   89
                  19.2.1   Directories........................   91
            19.3  The Hidden Directory........................   92
            19.4  Additional Memory Utilities.................   93

       20.  Display Management & Graphics.....................   94
            20.1  Display Organization........................   94
            20.2  Preparing the Display.......................   95
            20.3  Controlling Display Refresh.................   96
            20.4  Clearing the Display........................   97
            20.5  Annunciator Control.........................   97
            20.6  Display Coordinates.........................   98
                  20.6.1   Window Coordinates.................   98
            20.7  Displaying Text.............................   99
                  20.7.1   Standard Text Display Areas........   99
                  20.7.2   Temporary Messages.................  101
            20.8  Graphics Objects............................  102
                  20.8.1   Warnings...........................  102
                  20.8.2   Graphics Tools.....................  103
                  20.8.3   Grob Dimensions....................  104
                  20.8.4   Built-in Grobs.....................  104
                  20.8.5   Menu Display Utilities.............  105
            20.9  Scrolling the Display.......................  105

       21.  Keyboard Control..................................  109
            21.1  Key Locations...............................  109
            21.2  Waiting for a Key...........................  110
            21.3  InputLine...................................  111
                  21.3.1   InputLine Example..................  112
            21.4  The Parameterized Outer Loop................  113
                  21.4.1   The Parameterized Outer Loop
                           Utilities..........................  114
                  21.4.2   Overview of the Parameterized
                           Outer Loop.........................  115
                  21.4.3   Handling Errors with the
                           Utilities..........................  116
                  21.4.4   The Display........................  116
                  21.4.5   Error Handling.....................  117
                  21.4.6   Hard Key Assignments...............  117
                  21.4.7   Menu Key Assignments...............  119
                  21.4.8   Preventing Suspended
                           Environments.......................  120
                  21.4.9   Specifying an Exit Condition.......  120
                  21.4.10  ParOuterLoop Example...............  121

       22.  System Commands...................................  123

                                 - iii -



                          RPL PROGRAMMING GUIDE

       1.  Introduction

       The HP 48 calculator was designed to be a customizable
       mathematical scratchpad for use by students and
       professionals in technical fields.  In many respects it is a
       descendent of the HP 41, providing a much broader and more
       sophisticated computation capability than the HP 41, but
       preserving its RPN/key-per-function orientation.

       The HP 48 uses the so-called Saturn architecture, named by
       the code name of the original CPU designed for the HP 71B
       handheld computer.  It also uses a custom operating
       system/language called RPL, which was designed to provide
       symbolic mathematical capabilities, executing from ROM in a
       limited RAM environment (it is today still the only symbolic
       system that can run in ROM).  The combination of specialized
       hardware and firmware makes it relatively difficult to
       develop application software for the HP48, and accordingly
       the HP48 is not positioned as a primary external application
       vehicle.  The orientation of the product and its user
       programming language is towards simple customization by the
       primary user.

       Despite these barriers, the price and physical configuration
       of the HP48 make it a desirable application platform for
       many software developers, especially those who want to
       target customers in the HP48's normal markets.  The user
       language is suitable for simple programs, but for elaborate
       systems, the intentional error protection and other overhead
       can result in substantial performance penalties compared
       with the programs using the full range of system calls.

       In this document, we will provide a description of the
       design and conventions of the RPL language.  The material
       here should provide enough detail to permit the creation of
       RPL programs and other objects, using the associated IBM
       PC-based compilation tools.  Included is documention of a
       large number of system RPL objects that are useful utilities
       for program development.

                                  Page 1



       2.  RPL Principles

       (The following material was excerpted from "RPL: A
       Mathematical Control Language", by W. C. Wickes, published
       in "Programming Environments", Institute for Applied Forth
       Research, Inc., 1988)

       2.1  Origins

       In 1984, a project was started at Hewlett-Packard Corvallis
       Division to develop a new software operating system to
       streamline calculator development and support a new
       generation of hardware and software.  Previously, all HP
       calculators were implemented entirely in assembly language,
       a process that was becoming increasingly cumbersome and
       inefficient as the memory sizes of the calculators
       increased.  The objectives for the new operating system were
       as follows:

          + To provide execution control and memory management,
            including plug-in memory;

          + To provide a programming language for rapid prototyping
            and application development;

          + To support a variety of business and technical
            calculators;

          + To execute identically out of RAM and ROM;

          + To minimize memory use, especially RAM;

          + To be transportable to various CPU's;

          + To be extensible; and

          + To support symbolic mathematical operations.

       Several existing operating systems and languages were
       considered, but none could meet all of the design
       objectives.  A new system was therefore developed, which
       merges the threaded interpretation of Forth with the
       functional approach of Lisp.  The resulting operating
       system, known unofficially as RPL (for Reverse-Polish Lisp),
       made its first public appearance in June of 1986 in the HP-
       18C Business Consultant calculator.  Subsequently, RPL has
       been the basis for the HP-17B, HP-19B, HP-27S, HP-28C and
       HP-28S, and HP 48S and HP 48SX calculators.  The HP-17B,
       18C, and 19B are designed for business applications; they
       and the HP-27S scientific calculator offer an ``algebraic''
       calculating logic, and the underlying operating system is
       invisible to the user.  The HP 28/HP 48 families of
       scientific calculators use an RPN logic, and many of the
       facilities of operating system are directly available as
       calculator commands.

                                  Page 2



       2.2  Mathematical Control

       The official operating system objectives listed above were
       blended throughout the RPL development cycle with a less
       formal objective of creating a mathematical control language
       that would extend the ease-of-use and interactive nature of
       a calculator to the realm of symbolic mathematical
       operations.  A calculator is distinguished from a computer
       in this context by:

          + very compact size;

          + ``instant on''--no warm-up or software
            loading/bootstrapping;

          + dedicated keys for common operations rather than qwerty
            keyboards.

          + ``instant action'' when a function key is pressed.

       The HP-28, which was developed by the same team that created
       the RPL operating system, was the first realization of this
       background objective; the HP 48 is the latest and most
       mature implementation.

       Much of the design of RPL can be derived from a
       consideration of the manner in which ordinary mathematical
       expressions are evaluated.  Consider, for example, the
       expression

                             1+ 2 sin(3x) +4

       As any RPN enthusiast knows, the expression as written here
       does not correspond in its left-to-right order to the order
       in which a human or a machine could actually carry out the
       calculation.  For example, the first sum has to be delayed
       until after several other steps are executed.  Rewriting the
       expression in RPN form, we obtain a representation that is
       also executable in its written order:

                 1   2   3   x   *   sin   *   +   4   +

       To translate this sequence into a control language, we need
       to formalize several concepts.  First, we use the generic
       term object to refer to each step in the sequence, such as
       1, 2, or sin.  Even in this simple example, there are three
       classes of objects:

         1.  Data objects.  Execution of an object such as 1, 2, or
             3 in the example just returns the value of the object.

         2.  Names.  The symbol x must be the name of some other
             object; when x is executed, the named object is
             substituted for the symbol.

                                  Page 3



         3.  Procedures.  Objects such as *, sin, and + represent
             mathematical operations, which are applied, for
             example, to data objects to create new data objects.

       The concept of an object is closely tied to the concept of
       execution, which can be thought of as the "activation" of an
       object.  An individual object is characterized by its object
       type, which determines its action when executed, and its
       value, which distinguishes it from another of the same type.

       Expression evaluation in these terms becomes the sequential
       execution of a series of objects (the objects representing
       the RPN form of the expression).  Two constructs are
       necessary to make the execution coherent: an object stack
       and an interpreter pointer.  The first construct provides a
       place from which procedure objects can take their arguments
       and to which they can return their result objects.  A LIFO
       stack as used in Forth is ideal for this purpose, and such a
       stack is included in RPL.  The interpreter pointer is just a
       program counter that indicates the next object to be
       executed.  The interpreter pointer should be distinguished
       from the CPU program counter, which indicates the next CPU
       instruction.

       A mathematical expression considered as a sequence of
       objects suggests an additional classification of objects as
       either atomic or composite.  An atomic objects is an object
       that cannot be taken apart into stand-alone objects;
       examples are a simple data object like 1 or 2, or perhaps an
       object like * or + that is implemented normally in assembly
       language.  A composite object is a collection of other
       objects.  In Forth, a secondary word is an example of a
       composite object.  RPL provides at least three types of
       composite objects: secondaries, which are prcedures defined
       as unrestricted sequences of objects; symbolics, which are
       sequences of objects that must be logically equivalent to
       algebraic expressions; and lists, which contain objects
       collected for any logical purpose other than sequential
       execution.

       The final point in this brief mathematics-to-RPL derivation
       is the observation that the definition of composite objects
       leads to the concepts of threaded interpretation and a
       return stack.  That is, in the example it it easy to imagine
       that the name object x could represent a composite object
       that in turn represents another expression.  In that case,
       one would expect execution of x to cause the intepreter
       pointer to jump to the sequence of objects referenced by x,
       while the location of the object following x in the original
       is stored so that execution can later return there.  This
       process should be able to be indefinitely repeated, so RPL
       provides a LIFO stack for the return objects.

       The preceding introduction might in some respects also have
       been an introduction for the derivation of Forth, if
       questions of floating-point versus integer arithmetic are

                                  Page 4



       ignored.  In particular, both systems use threaded
       interpretation and a LIFO data stack for interchange of
       objects.  However, there are several important differences
       between Forth and RPL:

          + RPL supports both direct and indirect threaded
            execution in a completely uniform manner.

          + RPL supports dynamic allocation of its objects.

          + RPL code is, in general, completely relocatable.

       2.3  Formal Definitions

       This section will present the abstract definitions of RPL
       that are independent of any particular CPU or
       implementation.

       The fundamental structure in RPL is the object.  Any object
       consists of a pair: the prologue address and the object
       body.
                        +---------------+
                        |  -> Prologue  |
                        +---------------+
                        |     Body      |
                        +---------------+

       The two parts are contiguous in memory with the prologue
       address part in lower memory The prologue address is that of
       a machine-code routine that executes the object; the body is
       data used by the prologue.  Objects are classified by type;
       each type is associated with a unique prologue.  The
       prologues thus serve a dual purposes of executing an object
       and identifying its type.

       An object is either atomic or composite.  A composite object
       is either null or non-null; a non-null composite has a head
       which is an object and a tail which is composite.

       In addition to being executed, all RPL objects can be
       copied, compared, embedded in composite objects, and
       skipped.  The latter property implies that the memory length
       of any object is predetermined or can be computed from the
       object.  For atomic objects such as real numbers, the size
       is invariant.  For a more complicated atomic object such as
       a numerical array, the size can be computed from the array
       dimensions that are stored in the body of the array object.
       (RPL arrays are not composite--the elements do not have
       individual prologues and hence are not objects.) Composite
       objects may include a length field or they may end with a
       marker object.

       A pointer is an address in the memory space of the CPU, and
       may be a location pointer or an object pointer.  A location
       pointer addresses any part of memory, whereas a object
       pointer point to an object, specifically to the prologue
       location pointer at the start of an object.

                                  Page 5



       RPL requires, in addition to the CPU program counters, five
       variables for its fundamental operation:

          + The interpreter pointer I.

          + The current object pointer O.

          + The data stack pointer D.

          + The return stack pointer R.

          + The amount of free memory M.

       In the most general definition of RPL, I is an object
       pointer pointing to a composite object that is the top of a
       stack of composite objects called the runstream.  R points
       to the rest of the runstream stack.  In practical
       implementations, this definition is streamlined by allowing
       I to point to any object embedded in a composite, while R is
       a location pointer pointing to the top of a stack of object
       pointers, each of which points to an embedded object.

       It is fundamental to RPL that objects can be executed
       directly or indirectly with equivalent results.  This means
       that an object can be represented anywhere by a pointer to
       the object as well as by the object itself.

       2.4  Execution

       RPL object execution consists of the CPU execution of the
       object's prologue, where the prologue code can access the
       object's body by means of the object pointer O.  Object
       pointer execution is the CPU execution of the pointer's
       addressee.  This interpretive execution is controlled by the
       inner interpreter, or inner loop, which determines the
       sequence of object/object pointer execution.

       RPL objects are sorted by their general execution properties
       into three classes:

       * Objects that merely return themselves to the data stack
       when executed are called data class objects.  Examples are
       real numbers, strings, and arrays.

       * Objects that serve as references for other objects are
       called identifier class objects.  RPL defines three
       identifier class object types: identifier (global name),
       temporary identifier (local name), and ROM pointer (XLIB
       name).

       * Objects that contain bodies into which execution flow can
       pass are called procedure class objects.  There are three
       types of procedure class objects: programs (also called a
       "secondaries" or a "colon-definitions" in Forth
       terminology), code objects, and primitive code objects.

                                  Page 6



       The RPL inner loop and prologue designs provide for
       interchangeable direct and indirect object execution (note:
       a patent application has been filed for the concepts
       described next). The inner loop consists of the following
       pseudo-code:

                             O = [I]
                             I = I + delta
                             PC = [O] + delta

       where [x] means the contents of address x, and delta is the
       length of a memory address.  This loop is the same in Forth,
       except that the CPU execution jumps to [O]+delta instead of
       to [O].  This is because all RPL prologues start with their
       own address, which is the feature that makes possible direct
       execution as well as indirect.  Prologues look like this:

       PROLOG  ->PROLOG                            Self address
               IF O + delta != PC THEN GOTO REST   Test for direct execution
               O = I - delta                       Correct O
               I = I + len                         Correct I
       REST    (rest of prologue)

       Here len is the length of the object body.

       When an object is being executed directly, the inner loop
       does not set O or I correctly.  However, a prologue knows it
       is being executed directly by comparing the PC address with
       O and can update the variables accordingly.  A prologue is
       also responsible for preserving the threaded interpretation
       by including a return to the inner loop at its end.

       This flexible interpretation is intrinsically slower than
       the indirect-only execution (like Forth), because of the
       overhead of making the direct/indirect test.  In practical
       implementations of RPL, it is possible to shift the overhead
       almost entirely to the direct execution case, so that the
       execution penalty for the indirect case is negligible,
       including primitive assembly language objects that are never
       executed directly.  The trick is to replace the last step of
       the inner loop with the Forth-like PC = [O], and, for
       prologues of directly-executable objects, replace the self-
       address at the start of each prologue with a slice of
       executable code delta in length. The compiled opcodes of
       this slice must also be the address of a meta-prologue that
       handles the direct execution case.  In Saturn CPU
       implementations, the code slice consists of the instruction
       M=M-1 (decrementing available memory is common to virtually
       all directly-executable object prologues) plus a NOP
       instruction to fill out the delta length.

       The virtue of direct execution is that it enables the
       straightforward management of nameless objects that are
       created during execution.  During the course of symbolic
       algebraic manipulations, it is common to create, use, and
       discard any number of temporary intermediate results; the

                                  Page 7



       necessity to compile and store these objects with some form
       of name for indirect reference, then uncompile them to
       recover memory, would make the whole process unmanageable.
       In RPL such objects can be placed on the stack, copied,
       embedded in composite objects, executed, and deleted.  For
       example, a composite object representing the expression x +
       y can be added to a second object representing 2z, returning
       the result object x + y + 2z; furthermore, any of these
       objects could be embedded in a program object to perform the
       addition repetitively.

       Although RPL is primarily a syntax-less postfix language in
       which procedures take their arguments from the stack and
       return results to the stack, it does provide operations that
       work on the runstream to provide for prefix operations and
       for alterations to the normal threaded execution.  Foremost
       among the runstream operations is the quoting operation that
       takes the next object from the runstream and pushes it on
       the data stack to postpone its execution.  This operation is
       similar in purpose to the Lisp QUOTE, but takes its RPL name
       ' (tick), from its Forth equivalent. RPL also has operations
       to push and pop objects from the return stack.  (DO loop
       parameters, however, are not stored on the return stack,
       using a special environment instead.)

       2.4.1  EVAL  An object on the data stack may be indirectly
       executed by means of the RPL word EVAL, which pops an object
       from the stack and executes its prolog.  The system object
       EVAL should be distinguished from the user RPL command EVAL.
       The latter is equivalent to system EVAL except for lists,
       symbolic objects, and tagged objects.  For a tagged object,
       user EVAL executes the object contained in the body of the
       tagged object.  For lists and symbolics, user EVAL
       dispatches to the system word COMPEVAL, which executes the
       object as if it were a program (see below).

                                  Page 8



       2.4.2  Data_Class_Objects  Object types in this class are:
              Binary Integer Object (note: the user RPL binary integer is actually
                                     a hex string object in system RPL terms.)
              Real Object
              Extended Real Object
              Complex Object
              Extended Complex Object
              Array Object
              Linked Array Object
              Character String Object
              Hex String Object
              Character Object
              Graphics Object
              Unit Object
              List Object
              Symbolic Object ("algebraic object")
              Library Data Object
              Directory Object
              Tagged Object
              External Object

       All objects in the data class have the property that, when
       executed, they simply place themselves on the top of the
       data stack.

       2.4.3  Identifier_Class_Objects  Object types in this class
       are:

              ROM Pointer Object (XLIB name)
              Identifier Object (global name)
              Temporary Identifier Object (local name)

       Objects in the identifier class share the property that they
       serve to provide references for other objects. Identifier
       objects represent the resolution of global variables, and
       ROM Pointer Objects represent the resolution of commands
       stored in libraries.  Temporary identifier objects, on the
       other hand, provide references for temporary objects in
       temporary environments.

       Execution of a ROM pointer object (by the DOROMP prologue)
       entails locating and then executing the referenced ROM-WORD
       object part. Non-location is an error condition.

       Execution of an identifier object (by the DOIDNT prologue)
       entails locating and then executing the referenced global
       variable object part. Non-location returns the identifier
       object itself.

       Execution of a temporary identifier object (by the DOLAM
       prologue), entails locating the referenced temporary object
       and pushing it on the data stack.  Non-location is an error
       condition.

                                  Page 9



       2.4.4  Procedure_Class_Objects  Object types in this class
       are:

              Code Object
              Primitive Code Object
              Program Object

       Objects in the procedure class share the property of
       executability, that is, executing a procedure class object
       involves passing control to executable procedure or code
       associated with the object.

       Code objects contain assembly language sequences for direct
       execution by the CPU, but are otherwise normal, relocatable
       objects.  Primitive code objects have no prolog in the usual
       sense; the prolog address field points directly to the
       object body, which contains an assembly language sequence.
       These objects can only exist in permanent ROM, and can never
       be executed directly.  When a code object or primitive code
       object is executed, control is passed (by setting the PC) to
       the machine language instruction set contained in the object
       body. For a primitive code object, this control passing is
       done by the execution mechanism (EVAL or the inner loop)
       itself. For a code object, the prologue passes control by
       placing the PC at the beginning of the machine language
       slice contained in the object body. Note again that a
       primitive code object prologue (which is its body) need not
       contain logic to test for direct verses indirect execution
       (nor contain code to update I or O) since, by definition, it
       is never executed directly.

       Execution of a program is sequential execution of the
       objects and object pointers that comprise the body of the
       program.  The execution is threaded in that the objects in a
       program may themselves be secondaries or pointers to
       secondaries.  When encountered by the inner loop, an
       embedded program is executed prior to resumption of
       execution of the current one.

       The end of a program is marked by the object SEMI (from
       "semicolon"--a ";" is the closing delimiter recognized by
       the RPL compiler to mark the end of a program definition).
       Execution of SEMI pops the top object pointer from the
       return stack and resumes execution at that point.

       2.4.5  Object_Skipover_and_SEMI  One of the basic premises
       of RPL is that any RPL object that can be directly executed
       (which includes all object types except primitive code
       objects) must be traversable, that is, must have a structure
       which allows it to be skipped over. Object skipover occurs
       throughout the RPL system but most notably during direct
       execution by the inner loop when the interpreter pointer I
       must be set to point to the next object after the one being
       directly executed.

                                 Page 10



       There exist both RPL objects and utilities to perform this
       object skipover function. In addition, objects are required
       to skipover themselves when being executed directly. The
       skipover mechanism for atomic objects is simple and
       straightforward since the object length is either known or
       is easily computable.  For the composite objects (program,
       list, unit, symbolic) the length is not easily computable
       and the skipover function here is somewhat more involved,
       using an implicit recursion.  These composite objects do not
       carry known or easily computable length information and
       therefore must have a tail delimiter, namely an object
       pointer to the primitive code object SEMI. Note that SEMI
       serves an explicit function for the program object (the
       procedure class composite object); for data class composite
       objects (list, unit, and symbolic objects), it only serves
       as a tail delimiter.

       2.4.6  RPL_Pointers  A pointer is defined to be an address
       and may be either a location pointer or an object pointer. A
       location pointer addresses any segment of the memory map
       while an object pointer specifically addresses an object.
       Note that, for example, the prologue address part of an
       object is a location pointer.

       2.5  Memory Management

       The uniformity of direct and indirect execution means not
       only that objects as well as object pointers can be embedded
       in the execution stream, but also that object pointers can
       logically replace objects.  In particular, the RPL data and
       return stacks explicitly are stacks of object pointers.
       This means, for example, that an object on the data stack
       can be copied (e.g. by DUP) at a cost of only delta bytes of
       memory, regardless of the size of the object.  Furthermore,
       duplication and similar stack operations are very fast.

       Of course, the objects referenced on the stacks must exist
       somewhere in memory.  Many, including all of the system
       objects that provide system management and an application
       language, are defined in ROM and can be referenced by a
       pointer with no other housekeeping implications.  Objects
       created in RAM may exist in two places.  Those that are
       unnamed are stored in a temporary object area, where each is
       maintained as long as it is referenced by a pointer anywhere
       in the system (this implies that if a temporary object
       moves, all pointers to it must be updated).  Naming an
       object consists of storing it as a pair with a name field in
       a linked-list called the user object area.  These objects
       are maintained indefinitely, until they are explicitly
       purged or replaced.  A named object is accessed by means of
       an identifier object, which consists of an object with a
       name field as its body.  Executing an identifier causes the
       user object area to be searched for an object stored with
       the same name, which is then executed.  This run-time

                                 Page 11



       resolution is intrinsically slower than the compile-time
       resolution used for ROM objects, but it allows for a dynamic
       and flexible system where the order in which objects are
       compiled is immaterial.

       The process of naming objects by storing them with names in
       the user object area is augmented by the existence of local
       environments, in which objects can be bound to names (lambda
       variables) that are local to a currently executing
       procedure.  The binding is abandoned when the procedure
       completes execution.  This feature simpifies complicated
       stack manipulations by allowing the stack objects to be
       named and then referenced by name within the scope of a
       defining procedure.

       RPL provides that any object stored in the user object area
       can be deleted without corrupting anything in the system.
       This requires certain design conventions:

          + When a RAM object is stored in the user object area, a
            new copy of the object is stored, not a pointer to the
            object.

          + Pointers to RAM objects are not permitted in composite
            objects.  When a composite object is created from stack
            objects, RAM objects are copied and directly embedded
            in the composite.  When a stored object is represented
            by name in a composite, it is the identifier object
            that is embedded, not a location pointer as in Forth.

          + If a stored object is referenced by any pointers on the
            stacks at the time when it is purged, it is copied to
            the temporary object area and the pointers to it are
            updated accordingly.  This means that the memory
            associated with an object is not recovered until the
            last reference to it is deleted.

       The use of temporary objects with multiple references means
       that a temporary object can not necessarily be deleted from
       memory immediately when a single reference to it is
       eliminated.  In current RPL implementations, no memory
       recovery at all is performed until the system runs out of
       memory (M=0), at which time all unreferenced objects in the
       temporary object area are deleted.  The process, called
       "garbage collection" can be significantly time-consuming, so
       that RPL execution does not proceed uniformly.

       From the preceding discussion, it will be apparent that RPL
       is not as fast in general as Forth because of its extra
       interpretation overhead and greatly elaborated memory
       management scheme.  While maximum execution speed is always
       desirable, the design of RPL emphasizes its role as an
       interactive mathematical control language in which
       flexibility, ease of use, and the ability to manipulate
       procedural information are paramount.  In many cases, these
       attributes of RPL result in faster problem-solving

                                 Page 12



       throughput than Forth, which executes faster but is more
       difficult to program.

       RPL also provides for objects that are intermediate between
       those fixed in ROM and those that are mobile in RAM.  A
       library is a collection of objects, organized in a permanent
       structure that permits parse-time and run-time resolution by
       means of tables included in the library.  An XLIB name is an
       identifier class object that contains a library number and
       an object number within the library.  Execution of an XLIB
       name executes the stored object.  The identities and
       locations of libraries are determined at system
       configuration.  A particular library can be associated with
       its own RAM directory, so that, for example, a library might
       contain permanent formulas for which the variable values are
       maintained in RAM.

       2.6  User RPL and System RPL

       There is no fundamental difference between the HP 48
       programming language, which we will call "user RPL," and the
       "system RPL" in which HP 48 functionality is implemented.
       User language programs are executed by the same inner loop
       interpreter as system programs, with the same return stack.
       The data stack displayed on the HP 48 is the same as that
       used by system programs.  The distinction between user RPL
       and system RPL is only one of scope: user RPL is a subset of
       system RPL.  User RPL does not provide direct access to all
       of the data class object types that are available; the use
       of built-in procedures is limited to those that are provided
       as commands.

       A "command" is procedure-class object stored in a library,
       along with a text string that serves as the command's name.
       The name is used for compiling and decompiling the object.
       When the command line parser matches text in the command
       line with a command name, it compiles an object pointer if
       the command is contained in a library in the HP 48's
       permanent ROM.  Otherwise it compiles the corresponding XLIB
       name.  Also, built-in command objects are preceded in ROM by
       a six-nibble field that is the body of an XLIB name.  When
       the decompiler encounters an object pointer, it looks for
       this field in the ROM ahead of the object; if it finds a
       valid field, it then uses the information there to locate a
       text command name to display. Otherwise, it decompiles the
       object itself.

       Commands are distinguished from other procedure objects by
       certain conventions in their design.  Structurally, all
       commands are program objects, the first object in which is
       one of the system dispatch objects CK0, CK1&Dispatch,
       CK2&Dispatch, CK3&Dispatch, CK4&Dispatch, and CK5&Dispatch
       (see section 13).  CK0, which is used by zero-argument
       commands, may be followed by any additional objects.
       CK1&Dispatch ... CK&Dispatch must be followed by a sequence

                                 Page 13



       of pairs of objects; the first of each pair identifies a
       stack argument type combination, and the second specifies
       the object to execute for each corresponding combination.
       The last pair is followed by the end-program marker object
       (SEMI).

       The other command object conventions govern their behavior.
       In particular, they should:

       * remove any temporary objects from the stack, returning
       only the specified results;

       * do any range checking necessary to ensure that errors do
       not occur that might cause disasters;

       * restore HP48 modes to their original states, unless the
       command is specifically for changing a mode.

       The overhead involved in these structure and behavior
       conventions does impose a minor performance penalty.
       However, the primary execution speed advantage of system RPL
       over user RPL comes simply from the larger set of available
       procedures in system RPL, access to fast binary arithmetic,
       and improved control over system resources and execution
       flow.

       2.7  Programming in System RPL

       Writing programs in system RPL is no different in principle
       than in user RPL; the difference lies in the syntax and
       scope of the compiler.  For user RPL, the compiler is the
       command line ENTER, the logic of which is documented in the
       owners' manuals.  For system RPL developed on a PC, the
       compiler has several parts.  The immediate analog of the
       command line parser is the program RPLCOMP, which parses
       source code text into Saturn assembly language.  (The syntax
       used by RPLCOMP is described in xxx.) The output of RPLCOMP
       is passed to the assembler program SASM, which produces
       assembled object code.  The program SLOAD resolves symbol
       references in SASM's output, finally returning executable
       code suitable for downloading into the HP 48.  Individual
       objects can be collected in an HP 48 directory that is
       transferred back to the PC, where the program USRLIB can
       transform the directory into a library object.  (It would be
       desirable to create a library directly on the PC, but the
       program to do this is not available at present.)

       For the purpose of illustration, consider a hypothetical
       project development process that will result in a library
       object constructed with the USRLIB tool.  The library is to
       contain a single command, BASKET, which calculates basket
       weaving factors according to several input parameters.
       BASKET should be designed with the structure described above
       for commands.  In addition, assume that BASKET calls several
       other programs which are not to be user-accessible.  To

                                 Page 14



       achieve this, the objects are compiled on the PC, then
       downloaded into the HP 48 in a common directory, stored as
       BASKET, B1, B2, ... , where the latter variables contain the
       subroutines.  The directory is uploaded to the PC, where
       USRLIB is applied to it with the directive that B1, B2, ...
       are to be "hidden."

       There is no requirement that a program produced with the RPL
       compiler must be presented in a library object - if the
       entire application can be written within a single program,
       then so much the better.  As programs grow beyond some
       reasonable level of complexity, this becomes more difficult,
       and a library object approach with multiple variables
       becomes easier to manage.

         1.  Create the source file on the PC using your favorite
             editor.  The program source file name should have a
             ".s" extension, such as "prog.s". Use the compiler
             RPLCOMP.EXE to produce the Saturn assembler source
             file "prog.a".

         2.  Use the Saturn assembler SASM.EXE to assemble the
             program and produce an output file "prog.o".

         3.  Use the Saturn loader SLOAD.EXE to resolve your
             program's calls to HP 48 operating system.  SLOAD.EXE
             output files may have any name, but the ".ol"
             extension is often used.

         4.  Download the final file (use binary transfer!) to the
             HP 48, and try out your code.

         5.  Upload the directory containing one or more objects to
             the PC, and use USRLIB.EXE to convert it to a library.

                                 Page 15



       2.8  Sample RPL Program

       To get acquainted with the process of producing a program
       written in internal RPL, consider the following example,
       which we'll call TOSET.

       2.8.1  The_Source_File

       This program removes duplicate objects from a list by
       decomposing the list into a series of objects on the stack,
       creating a new empty list, and putting the stack objects
       into the new list if they're unique.

       * ( {list} --> {list}' )
       ASSEMBLE
               NIBASC  /HPHP48-D/
       RPL
       ::
         CK1NOLASTWD                   ( *Req. 1 argument* )
         CK&DISPATCH0 list
           ::
             DUPNULL{}? ?SEMI          ( *Exit for empty list* )
             INNERCOMP                 ( objn ... obj1 #n )
             reversym                  ( obj1 ... objn #n )
             NULL{} SWAP               ( obj1 ... objn {} #n )
             ZERO_DO (DO)
               SWAP                    ( obj1 ... objn-1 {} objn )
               apndvarlst              ( obj1 ... objn-1 {}' )
             LOOP
          ;
       ;

       The first line is a comment, showing the input and output
       conditions for the program.  Comments are denoted by an
       asterisk (*) in the first column, or within parentheses.
       Every programmer has their own style for comments. The style
       shown here is that objects are shown with stack level one on
       the right.  Text is enclosed in asterisks.

       The sequence

       ASSEMBLE
               NIBASC  /HPHP48-D/
       RPL

       is a command to the assembler that includes the header for
       binary data transfer from the PC to the HP48.  This is
       included here for simplicity, but could be included from
       another file by the loader.

       The first command, CK1NOLASTWD, requires the stack contain
       at least one item, and clears the ram location which stores
       the name of the current command.  This is important, because

                                 Page 16



       you don't want to attribute errors encountered in this
       program to the last function that generated an error.

       The second command, CK&DISPATCH0, reads a structure of the
       form

               type action
               type action
               ...

       to decide what action to take based on the TYPE of object
       presented.  If the type of object in level 1 does not have
       an entry in the table, the error "Bad Argument Type" will be
       generated.  In this example, only one type of argument, a
       list, is acceptable, and the corresponding action is a
       secondary.  For more on argument checking commands, see the
       chapter "Argument Validation".

       The command DUPNULL{}? returns the list and a TRUE/FALSE
       flag which indicates if the list is empty.  The command
       ?SEMI exits the secondary if the flag is TRUE.

       The command INNERCOMP is an internal form of the user word
       LIST->.  The number of objects is returned in level one as a
       binary integer (see the chapter "Binary Integers").

       The command "reversym" reverses the order of #n objects on
       the stack.  This is used here to account for the ordering of
       objects placed in a list by the "apndvarlst" which is
       described below.

       The ZERO_DO command begins a counted loop. This loop will
       process each object in the original list.  The (DO) command
       tells RPLCOMP that this is the start of a loop, otherwise
       the LOOP command would be flagged as unmatched.

       The "apndvarlst" command appends an object to a list if and
       only if that object does not appear in the list already.

       The LOOP command ends the loop.  For more on loop commands,
       see the chapter "Loop Structures".

                                 Page 17



       2.8.2  Compiling_the_Program  To compile the program for the
       HP 48, follow these steps:

         1.  Store the example code in a file TOSET.S.

         2.  RPLCOMP TOSET.S TOSET.A

             This command compiles the RPL source and produces a
             Saturn assembler source file.

         3.  SASM TOSET.A

             This command assembles the Saturn source file to
             produce the files TOSET.L and TOSET.O.

         4.  The file TOSET.M is a loader control file that looks
             like this:

             TITLE Example           <-- Specifies a listing title
             OUTPUT TOSET            <-- Specifies the output file
             LLIST TOSET.LR          <-- Specifies the listing file
             SUPPRESS XREF           <-- Suppresses the cross ref
             SEARCH ENTRIES.O        <-- Reads HP48 entries
             REL TOSET.O             <-- Loads TOSET.o
             END

             Create the file TOSET.M and invoke the loader:

             SLOAD -H TOSET.M

       Check the file TOSET.LR for errors. An unresolved reference
       usually points to a misspelled command.  Now download the
       file TOSET into the HP 48 and give it a try!

       Enter the list { 1 2 2 3 3 3 4 }, evaluate TOSET, and you
       should get { 1 2 3 4 }.

                                 Page 18



       3.  Object Structures

       This chapter provides additional information about some of
       the RPL object types supported by the HP 48.  Although the
       information is primarily relevant to assembly language
       programming, a knowledge of object structure can often help
       in understanding performance and efficiency issues in RPL
       programming.

       Unless explicitly stated otherwise, all specifically-defined
       fields within an object body are assumed to be 5 nibbles,
       the CPU address width.

       3.1  Object Types

       3.1.1  Identifier_Object

       An identifier object is atomic, has the prologue DOIDNT, and
       a body which is an ID Name form.

                   +---------------+
                   |  -> DOIDNT    |  Prologue Address
                   +---------------+                     Identifier
                   | ID NAME FORM  |  Body               Object
                   +---------------+

       An ID name form is a character sequence preceded by a one-
       byte character count field.

       Identifier objects are, among other things, the compiletime
       resolution of global variables.

       3.1.2  Temporary_Identifier_Object

       A temporary identifier object is atomic, has the prologue
       DOLAM, and a body which is an ID name form.

                   +---------------+
                   |  -> DOLAM     | Prologue Address    Temporary
                   +---------------+                     Identifier
                   |  ID NAME FORM | Body                Object
                   +---------------+

       Temporary identifier objects provide named references for
       temporary objects bound to the identifiers in the formal
       parameter list of a temporary variable structure.

                                 Page 19



       3.1.3  ROM_Pointer_Object

       A ROM pointer object, or XLIB name, is atomic, has the
       prologue DOROMP, and a body which is a ROM-WORD identifier.

                   +------------------+
                   |   -> DOROMP      | Prologue Address
                   +------------------+                     ROM
                   |                  |                     Pointer
                   |    Command       | Body                Object
                   |   Identifier     |
                   |                  |
                   +------------------+

       ROM pointer objects are the compiletime resolution of
       commands in mobile libraries.  A command indentifier
       identifier is a pair of 12 bit fields: the first field is a
       library ID number, and the second field is the command ID
       number within the library.

       3.1.4  Binary_Integer_Object

       A binary integer object is atomic, has the prologue DOBINT,
       and a body which is a 5-nibble number.

                   +------------------+
                   |   -> DOBINT      | Prologue Address
                   +------------------+
                   |                  |             Binary
                   |      Number      | Body        Integer
                   |                  |             Object
                   +------------------+

       The use of this object type is to represent binary integers
       whose precision is equivalent to a memory address.

       3.1.5  Real_Number_Object

       A real number object is atomic, has the prologue DOREAL, and
       a body which is a single-precision floating point number (or
       real number, for short).

                   +-----------------+
                   |  -> DOREAL      | Prologue Address
                   +-----------------+
                   |                 |
                   | Single-precision|            Real Number
                   | Floating Point  | Body       Object
                   | Number          |
                   |                 |
                   +-----------------+

                                 Page 20



       One use of this object type is to represent packed
       floating-point numbers (eight bytes) on a Saturn system and,
       in this application, the body of the object may consist of
       16 BCD nibbles as follows:

              (low mem)      EEEMMMMMMMMMMMMMMMS

       where S is the numeric sign (0 for nonnegative and 9 for
       negative), MMMMMMMMMMMM is a 12 digit mantissa with an
       implied decimal point between the first and second digits
       and the first digit nonzero if the number is nonzero, and
       EEE the exponent in tens complement form (-500 < EEE < 500).

       3.1.6  Extended_Real_Number_Object

       An extended real number object is atomic, has the prologue
       DOEREL, and a body which is an extended-precision floating
       point number (or extended real, for short).

                   +-----------------+
                   |  -> DOEREL      | Prologue Address
                   +-----------------+
                   |                 |              Extended
                   | Extended-       |              Real Number
                   | precision       |              Object
                   | Floating Point  | Body
                   | Number          |
                   |                 |
                   +-----------------+

       One use of this object type is to represent unpacked
       floating-point numbers (10.5 bytes) on a Saturn system and,
       in this application, the body of the object may consist of
       21 BCD nibbles as follows:

             (low mem)     EEEEEMMMMMMMMMMMMMMMS

       where S is the numeric sign (0 for nonnegative, 9 for
       negative), MMMMMMMMMMMMMMM is a 15 digit mantissa with an
       implied decimal point between the first and second digits
       and the first digit nonzero if the number is nonzero, and
       EEEEE the exponent in tens complement form (-50000 < EEEEE <
       50000).

                                 Page 21



       3.1.7  Complex_Number_Object

       A complex number object is atomic, has the prologue DOCMP,
       and a body which is a pair of real numbers.

                   +------------------+
                   |    -> DOCMP      | Prologue Address
                   +------------------+
                   |                  |            Complex
                   |   Real Number    |            Object
                   |    ---------     | Body
                   |   Real Number    |
                   |                  |
                   +------------------+

       The use of this object type is to represent single-precision
       complex numbers, where the real part is interpreted as the
       first real number in the pair.

       3.1.8  Extended_Complex_Number_Object

       An extended complex number object is atomic, has the
       prologue DOECMP, and a body which is a pair of extended real
       numbers.

                   +------------------+
                   |    -> DOECMP     | Prologue Address
                   +------------------+
                   |                  |
                   |  Extended Real   |
                   |     Number       |              Extended
                   |    ----------    | Body         Complex Number
                   |  Extended Real   |              Object
                   |     Number       |
                   |                  |
                   +------------------+

       The use of this object type is to represent extended-
       precision complex numbers in the same way as for the complex
       object.

                                 Page 22



       3.1.9  Array_Object

       An array object is atomic, has the prologue DOARRY, and a
       body which is a collection of the array elements. The body
       also includes a length field (indicating the length of the
       body), a type indicator (indicating the object type of its
       elements), a dimension count field, and length fields for
       each dimension.

                   +------------------+
                   |  -> DOARRY       | Prologue Address
                   +------------------+
                   |                  |
                   |  Length Field    |
                   |   ------------   |
                   | Type Indicator   |
                   |   ------------   |
                   | Dimension Count  |
                   |   ------------   |
                   |Dimension 1 Length|
                   |   ------------   |
                   |Dimension 2 Length|
                   |   ------------   |
                   |        .         |             Array
                   |        .         |             Object
                   |        .         | Body
                   |   ------------   |
                   |Dimension N Length|
                   |   ------------   |
                   |                  |
                   |    Elements      |
                   |                  |
                   +------------------+

       The array elements are object bodies of the same object
       type.  The type indicator is a prologue address (think of
       this prologue address as applying to each element of the
       array).

       Array "OPTION BASE" is always 1. A null array is designated
       by any dim limit having the value zero. All elements of an
       array object are always present as indicated by the
       dimensionality information and are ordered in memory by the
       lexicographic order of the array's indices.

       3.1.10  Linked_Array_Object

       A linked array object is atomic, has the prologue DOLNKARRY,
       and a body which is a collection of the array elements. The
       body also includes a length field (indicating the length of
       the body), a type indicator (indicating the object type of
       its elements), a dimension count field, length fields for
       each dimension, and a pointer table whose contents are
       forward self-relative offsets to the array elements; the
       elements of the pointer table are ordered in memory by the

                                 Page 23



       lexicographic order of the array's indices.

                   +------------------+
                   | -> DOLNKARRY     | Prologue Address
                   +------------------+
                   |                  |
                   |  Length Field    |
                   |   ------------   |
                   | Type Indicator   |
                   |   ------------   |
                   | Dimension Count  |
                   |   ------------   |
                   |Dimension 1 Length|
                   |   ------------   |
                   |Dimension 2 Length|
                   |   ------------   |             Linked
                   |        .         |             Array
                   |        .         |             Object
                   |        .         | Body
                   |   ------------   |
                   |Dimension N Length|
                   |   ------------   |
                   |                  |
                   |  Pointer Table   |
                   |                  |
                   |   ------------   |
                   |                  |
                   |    Elements      |
                   |                  |
                   +------------------+

       The array elements are object bodies of the same object
       type.  The type indicator is a prologue address (think of
       this prologue address as applying to each element of the
       array).

       Linked array "OPTION BASE" is always 1. A null linked array
       is designated by any dim limit having the value zero.  There
       is no assumption on the ordering of the elements of a linked
       array object, nor on their presence; absence of an element
       lying on an allocated dimension is indicated by the value
       zero occupying the corresponding pointer table element.

                                 Page 24



       3.1.11  Character_String_Object

       A character string object is atomic, has the prologue
       DOCSTR, and a body which is a character string (a byte
       sequence). The body also includes a length field (indicating
       the length of the body).

                   +-------------------+
                   |  -> DOCSTR        | Prologue Address
                   +-------------------+
                   |                   |            Character
                   |   Length Field    |            String
                   |   ------------    | Body       Object
                   |   Byte Sequence   |
                   |                   |
                   +-------------------+

       3.1.12  Hex_String_Object

       A hex string object is atomic, has the prologue DOHSTR, and
       a body which is a nibble sequence. The body also includes a
       length field (indicating the length of the body).

                   +-------------------+
                   |  -> DOHSTR        | Prologue Address
                   +-------------------+
                   |                   |            Hex
                   |   Length Field    |            String
                   |   ------------    | Body       Object
                   |  Nibble Sequence  |
                   |                   |
                   +-------------------+

       A typical use for this object type is a buffer or table.
       Hex string objects of 16 nibbles or fewer are used to
       represent user RPL binary integer objects.

       3.1.13  Character_Object

       A character object is atomic, has the prologue DOCHAR, and a
       body which is a single byte.

                   +-------------------+
                   |    -> DOCHAR      | Prologue Address
                   +-------------------+
                   |                   |          Character
                   |        Byte       | Body     Object
                   |                   |
                   +-------------------+

       This object type is used to represent one-byte quantities,
       such as ASCII or ROMAN8 characters.

                                 Page 25



       3.1.14  Unit_Object

       A unit object is composite, has the prologue DOEXT, and
       a body which is a sequence consisting of a real number
       followed by unit name strings, prefix characters, unit
       operators, and real number powers, tail delimited by a
       pointer to SEMI.

                   +-------------------+
                   |    -> DOEXT       |
                   +-------------------+
                   |  Object Sequence  |
                   |                   |
                   |     ->SEMI        |
                   +-------------------+

       3.1.15  Code_Object

       A code object is atomic, has the prologue DOCODE, and a body
       which is an assembly language slice. The body also includes
       a length field (indicating the length of the body). When
       executed, the prologue places the system program counter at
       the assembly language slice within the body.

                   +--------------------+
                   |  -> DOCODE         | Prologue Address
                   +--------------------+
                   |                    |           Code Object
                   |   Length Field     |
                   |   ------------     | Body
                   | Assembly Language  |
                   |      Slice         |
                   |                    |
                   +--------------------+

       The major applications for this object type are assembly
       language procedures which can be directly embedded in
       composite objects or exist in RAM.

                                 Page 26



       3.1.16  Primitive_Code_Object

       A primitive code object is a special case of a code object,
       used to represent code primitives in built-in libraries.
       The prologue of a primitive code object is its body, which
       is an assembly language slice; thus, when executed, the body
       executes itself.

                   +------------------+
            +-----------------        | Prologue Address
            |      +------------------+
            +----->|                  |            Primitive
                   | Assembly Language| Body       Code Object
                   |      Slice       |
                   |                  |
                   +------------------+

       The primary purpose of this object type is more rapid
       execution of code objects in built-in libraries, that is,
       these objects are executed without the extra level inherent
       in separate prologue execution.  However, their structure
       implies that (1) they can only exist in built-in libraries
       (never in RAM or mobile libraries) since the body must exist
       at a fixed address, (2) they cannot be skipped, and (3) they
       cannot exist in any situation where traversal may be
       required, such as an element of an array or an object within
       any composite object.

       Note that this object type is an exception to the object
       type classification scheme presented at the beginning of
       this document. However, an object is a primitive code object
       if and only if the prologue address equals the object
       address plus 5. In addition, the prologues for this object
       type (that is, the object bodies) need not contain logic to
       test for direct verses indirect execution since, by
       definition, they cannot be executed directly.

       3.1.17  Program_Object

       A program object (secondary) is composite, has the prologue
       DOCOL, and a body which is a sequence of objects and object
       pointers, the last of which is an object pointer whose
       pointee is the primitive code object SEMI.

                   +------------------+
                   |  -> DOCOL        | Prologue Address
                   +------------------+
                   |                  |
                   |     Object/      |          Secondary
                   |  Object Pointer  |          Object
                   |    Sequence      |
                   |     --------     | Body
                   |     -> SEMI      |
                   |                  |
                   +------------------+

                                 Page 27



       3.1.18  List_Object

       A list object is composite, has the prologue DOLIST, and a
       body which is a sequence of objects and object pointers, the
       last of which is an object pointer whose pointee is the
       primitive code object SEMI.

                   +------------------+
                   |  -> DOLIST       | Prologue Address
                   +------------------+
                   |                  |
                   |     Object/      |          List
                   |  Object Pointer  |          Object
                   |    Sequence      |
                   |     --------     | Body
                   |     -> SEMI      |
                   |                  |
                   +------------------+

       3.1.19  Symbolic_Object

       A symbolic object is composite, has the prologue DOSYMB, and
       a body which is a sequence of objects and object pointers,
       the last of which is an object pointer whose pointee is the
       primitive code object SEMI.

                   +------------------+
                   |  -> DOSYMB       | Prologue Address
                   +------------------+
                   |                  |
                   |     Object/      |          Symbolic
                   |  Object Pointer  |          Object
                   |    Sequence      |
                   |     --------     | Body
                   |     -> SEMI      |
                   |                  |
                   +------------------+

       This object type is used to represent symbolic objects for
       symbolic math applications.

                                 Page 28



       3.1.20  Directory_Object

       A directory (RAMROMPAIR) object is atomic, has the prologue
       DORRP and a body which consists of a Library ID number and a
       RAMPART (linked list of variables--object/name pairs.

                   +----------------+
                   |  -> DORRP      |  Prologue Address
                   +----------------+
                   |                |           RAMROMPAIR
                   |  ROMPART ID    |           Object
                   |    --------    |  Body
                   |    RAMPART     |
                   +----------------+

       3.1.21  Graphics_Object

       A graphics object is atomic, has the prologue DOGROB and a
       body which consists of the following:

        + A 5 nibble length field for the data which follows.

        + A five nibble quantity that describes the height of the
          graphic in pixels.

        + A five nibble quantity that describes the width of the
          graphic in pixels.

        + The data.

       The actual row dimension in nibbles (W) is always even for
       hardware reasons, hence each row of pixel data is padded
       with anywhere from 0-7 bits of wasted data.

                   +----------------+
                   |  -> DOGROB     | Prologue Address
                   +----------------+
                   |    Len(nibs)   |
                   +----------------+
                   | Height (pixels)|         Graphics
                   +----------------+ Body    Object
                   | Width (pixels) |
                   +----------------+
                   |   Grob Data    |
                   |      ...       |
                   +----------------+

       The data nibbles begin at the upper-left corner of the
       graphics object and proceed left-to-right, top-to-bottom.
       Each row of pixel data is padded as needed to obtain an even
       number of nibbles per row. Thus the width in nibbles W is
       determined by:

                        W=CEIL(Width in pixels)/8

                                 Page 29



       The bits in each nibble are written in reverse order, so the
       leftmost displayed pixel in a nibble is represented by the
       least-significant bit of the nibble.

       3.2  Terminology and Abbreviations.

       In the stack diagrams used throughout the remainder of this
       document, the following symbols are used to represent the
       various object types:

       ob ........... Any object
       id ........... Identifier Object
       lam .......... Temporary Identifier Object
       romptr ....... ROM Pointer Object
       __# ............ Binary Integer Object
       % ............ Real Object
       %% ........... Extended Real Object
       C% ........... Complex Object
       C%% .......... Extended Complex Object
       arry ......... Array Object
       lnkarry ...... Linked Array Object
       $ ............ Character String Object
       hxs .......... Hex String Object
       chr .......... Character Object
       ext .......... External Object
       code ......... Code Object
       primcode ..... Primitive Code Object
       :: ........... Secondary Object
       {} ........... List Object
       symb ......... Symbolic Object
       comp ......... Any Composite Object (list, secondary, symbolic)
       rrp .......... Directory Object
       tagged ....... Tagged Object
       flag ......... TRUE/FALSE

       (TRUE and FALSE above denote the object parts of built-in
       ROM-WORDs having these names. The addresses of these objects
       (that is, their data stack representations) are interpreted
       by RPL control structures as the appropriate truth value.
       Both objects are primitive code objects which, when
       executed, place themselves on the data stack).

       In addition to the above notation, some additional
       terminology is useful.

       ELEMENT:
        An ELEMENT of a composite object is any object or object
        pointer in the body of the composite object.

                                 Page 30



       CORE:
        of a character string: the core of a character string
                               object is the character data in
                               the body.

        of a hex string: the core of a hex string object is the
                         nibble sequence in the body.

        of a composite: the core of a composite object is the
                        element sequence in the body not
                        including the trailing object pointer
                        to semi.

       LENGTH:
        of a character string: the length of a character string
                               object is the number of characters
                               in the core.

        of a hex string: the length of a hex string object is the
                         number of nibbles in the core.

        of a composite: the length of a composite object is the
                        number of elements in the core.

       NULL:
        character string: a null character string object is one
                          whose length is zero.

        hex string: a null hex string object is one whose length
                    is zero.

        composite: a null composite object is one whose length
                   is zero.

       INTERNAL:
        an internal of a composite object is any object in the
        core of the composite object or the pointee of any object
        pointer in the core of the composite object.

       (A composite object is often loosely referred to as
       containing a specific object type, for example "a list of
       binary integers"; what is meant is that the core internals
       are all of this object type).

                                 Page 31



       4.  Binary Integers

       Internal binary integers have a fixed size of 20 bits, and
       are the most often used type for counting, loops, etc.
       Binary integers offer advantages of size and speed.

       NOTE: User level binary integers are implemented as hex
             strings, so a user's object #247d is actually a hex
             string, and should not be confused with a binary
             integer whose prologue is DOBINT.

       4.1  Built-in Binary Integers

       The RPLCOMP compiler interprets a decimal number in a source
       file as a directive to produce a binary integer object -
       using a prologue and a body.  Built-in binary integers can
       be accessed with just an object pointer.  For instance, " 43
       " (no quotes) in the source file produces a binary object:

               CON(5)  =DOBINT
               CON(5)  43

       The object takes five bytes, but can be replaced by the word
       "FORTYTHREE", which is a supported entry point which would
       generate the following code:

               CON(5)  =FORTYTHREE

       One pitfall to be aware of in binary integer naming
       conventions is the difference between the entries FORTYFIVE
       and FOURFIVE.  In the former case, the value is decimal 45,
       but the latter is decimal 69.  Names like 2EXT and IDREAL,
       where the values are not obvious, are used in conjunction
       with the CK&Dispatch family of argument checking commands.
       The names for the CK&Dispatch family are equated to the same
       places as other bints.  This has been done for readability.
       For instance, the word SEVENTEEN, for decimal 17, has the
       names 2REAL and REALREAL equated to the same location.  A
       trailing "d" or "h" on a name such as BINT_122d or BINT80h
       indicates the base associated with the value.

       Words such as ONEONE, ZEROONE, etc. put more than one binary
       integer on the stack.  These are indicated by a tiny stack
       diagram in parentheses, such as (-->  #1 #1 ) for ONEONE.

                                 Page 32



       The supported entries for binary integers are listed below
       with the hex value in parentheses where needed:

       2EXT (#EE)       FORTYNINE        SYMREAL (#A1)
       2GROB (#CC)      FORTYONE         SYMSYM (#AA)
       2LIST (#55)      FORTYSEVEN       TAGGEDANY (#D0)
       2REAL (#11)      FORTYSIX         TEN
       3REAL (#111)     FORTYTHREE       THIRTEEN
       Attn# (#A03)     FORTYTWO         THIRTY
       BINT253          FOUR             THIRTYEIGHT
       BINT255d         FOURFIVE         THIRTYFIVE
       BINT40h          FOURTEEN         THIRTYFOUR
       BINT80h          FOURTHREE        THIRTYNINE
       BINTC0h          FOURTWO          THIRTYONE
       BINT_115d        FOURTY           THIRTYSEVEN
       BINT_116d        IDREAL (#61)     THIRTYSIX
       BINT_122d        INTEGER337       THIRTYTHREE
       BINT_130d        LISTCMP (#52)    THIRTYTWO
       BINT_131d        LISTLAM (#57)    THREE
       BINT_65d         LISTREAL (#51)   TWELVE
       BINT_91d         MINUSONE(#FFFFF) TWENTY
       BINT_96d         NINE             TWENTYEIGHT
       Connecting(#C0A) NINETEEN         TWENTYFIVE
       EIGHT            ONE              TWENTYFOUR
       EIGHTEEN         ONEHUNDRED       TWENTYNINE
       EIGHTY           ONEONE(--> #1 #1) TWENTYONE
       EIGHTYONE        REALEXT (#1E)    TWENTYSEVEN
       ELEVEN           REALOB (#10)     TWENTYSIX
       EXT (#E)         REALOBOB (#100)  TWENTYTHREE
       EXTOBOB (#E00)   REALREAL (#11)   TWENTYTWO
       EXTREAL (#E1)    REALSYM (#1A)    TWO
       EXTSYM  (#EA)    ROMPANY (#F0)    XHI
       FIFTEEN          SEVEN            XHI-1 (#82)
       FIFTY            SEVENTEEN        ZERO
       FIFTYEIGHT       SEVENTY          ZEROZERO (--> #0 #0 )
       FIFTYFIVE        SEVENTYFOUR    ZEROZEROONE (--> #0 #0 #1 )
       FIFTYFOUR        SEVENTYNINE   ZEROZEROTWO (--> #0 #0 #2 )
       FIFTYNINE        SIX          ZEROZEROZERO (--> #0 #0 #0 )
       FIFTYONE         SIXTEEN          char (#6F)
       FIFTYSEVEN       SIXTY            id (#6)
       FIFTYSIX         SIXTYEIGHT       idnt (#6)
       FIFTYTHREE       SIXTYFOUR        infreserr (#305)
       FIFTYTWO         SIXTYONE         intrptderr (#a03)
       FIVE             SIXTYTHREE       list (#5)
       FIVEFOUR         SIXTYTWO         ofloerr (#303)
       FIVESIX          SYMBUNIT (#9E)   real (#1)
       FIVETHREE        SYMEXT (#AE)     seco (#8)
       FORTY            SYMID (#A6)      str (#3)
       FORTYEIGHT       SYMLAM (#A7)     sym (#A)
       FORTYFIVE        SYMOB (#A0)      symb (#9)
       FORTYFOUR

                                 Page 33



       4.2  Binary Integer Manipulation

       4.2.1  Arithmetic_Functions

       #*              ( #2 #1 --> #2*#1 )
       #+              ( #2 #1 --> #2+#1 )
       #+-1            ( #2 #1 --> #2+#1-1 )
       #-              ( #2 #1 --> #2-#1 )
       #-#2/           ( #2 #1 --> (#2-#1)/2 )
       #-+1            ( #2 #1 --> (#2-#1)+1 )
       #/              ( #2 #1 --> #remainder #quotient )
       #1+             ( # --> #+1 )
       #1+'            ( # --> #+1 and quotes next runstream object
       #1+DUP          ( # --> #+1 #+1 )
       #1-             ( # --> #-1 )
       #10*            ( # --> #*10 )
       #10+            ( # --> #+10 )
       #12+            ( # --> #+12 )
       #2*             ( # --> #*2 )
       #2+             ( # --> #+2 )
       #2-             ( # --> #-2 )
       #2/             ( # --> FLOOR(#/2) )
       #3+             ( # --> #+3 )
       #3-             ( # --> #-3 )
       #4+             ( # --> #+4 )
       #4-             ( # --> #-4 )
       #5+             ( # --> #+5 )
       #5-             ( # --> #-5 )
       #6*             ( # --> #*6 )
       #6+             ( # --> #+6 )
       #7+             ( # --> #+7 )
       #8*             ( # --> #*8 )
       #8+             ( # --> #+8 )
       #9+             ( # --> #+9 )
       #MAX            ( #2 #1 --> MAX(#2,#1) )
       #MIN            ( #2 #1 --> MIN(#2,#1) )
       2DUP#+          ( #2 #1 --> #2 #1 #1+#2 )
       DROP#1-         ( # ob --> #-1 )
       DUP#1+          ( # --> # #+1 )
       DUP#1-          ( # --> # #-1 )
       DUP3PICK#+      ( #2 #1 --> #2 #1 #1+#2 )
       OVER#+          ( #2 #1 --> #2 #1+#2 )
       OVER#-          ( #2 #1 --> #2 #1-#2 )
       ROT#+           ( #2 ob #1 --> ob #1+#2 )
       ROT#+SWAP       ( #2 ob #1 --> #1+#2 ob )
       ROT#-           ( #2 ob #1 --> ob #1-#2 )
       ROT#1+          ( # ob ob' --> ob ob' #+1 )
       ROT+SWAP        ( #2 ob #1 --> #1+#2 ob )
       SWAP#-          ( #2 #1 --> #1-#2 )
       SWAP#1+         ( # ob --> ob #+1 )
       SWAP#1+SWAP     ( # ob --> #+1 ob )
       SWAP#1-         ( # ob --> ob #-1 )
       SWAP#1-SWAP     ( # ob --> #-1 ob )
       SWAPOVER#-      ( #2 #1 --> #1 #2-#1 )

                                 Page 34



       4.2.2  Conversion_Functions

       COERCE          ( % --> # )  If %<0 then # is 0
                                    If %>FFFFF then #=FFFFF
       COERCE2         ( %2 %1 --> #2 #1 ) See COERCE
       COERCEDUP       ( % --> # # ) See COERCE COERCESWAP      (
       ob % --> # ob ) UNCOERCE        ( # --> % )
       UNCOERCE%%      ( # --> %% ) UNCOERCE2       ( #2 #1 --> %2
       %1 )

                                 Page 35



       5.  Character Constants

       The following words are useful for converting between
       character objects and other object types:

       CHR>#           ( chr --> # )
       #>CHR           ( # --> chr )
       CHR>$           ( chr --> $ )

       The following character constants and strings are supported:

       CHR_# CHR_* CHR_+ CHR_, CHR_- CHR_. CHR_/ CHR_0 CHR_1 CHR_2
       CHR_3 CHR_4 CHR_5 CHR_6 CHR_7 CHR_8 CHR_9 CHR_: CHR_; CHR_<
       CHR_= CHR_> CHR_A CHR_B CHR_C CHR_D CHR_E CHR_F CHR_G CHR_H
       CHR_I CHR_J CHR_K CHR_L CHR_M CHR_N CHR_O CHR_P CHR_Q CHR_R
       CHR_S CHR_T CHR_U CHR_V CHR_W CHR_X CHR_Y CHR_Z CHR_a CHR_b
       CHR_c CHR_d CHR_e CHR_f CHR_g CHR_h CHR_i CHR_j CHR_k CHR_l
       CHR_m CHR_n CHR_o CHR_p CHR_q CHR_r CHR_s CHR_t CHR_u CHR_v
       CHR_w CHR_x CHR_y CHR_z

       CHR_00 (hex 0) CHR_...  CHR_DblQuote    CHR_-> CHR_<<
       CHR_>> CHR_Angle CHR_Deriv CHR_Integral CHR_LeftPar
       CHR_Newline  CHR_Pi CHR_RightPar CHR_Sigma CHR_Space
       CHR_UndScore CHR_[  CHR_]  CHR_{ CHR_}  CHR_<= CHR_>=
       CHR_<>

       $_R<<           ( $ "R\80\80" "R<angle><angle>" )
       $_R<Z           ( $ "R\80Z"   "R<angle>Z"       )
       $_XYZ           ( $ "XYZ"                       )
       $_<<>>          ( $ "ABBB"                      )
       $_{}            ( $ "{}"                        )
       $_[]            ( $ "[]"                        )
       $_''            ( $ "''"                        )
       $_::            ( $ "::"                        )
       $_LRParens      ( $ "()"                        )
       $_2DQ           ( $ """"""                      )
       $_ECHO          ( $ "ECHO"                      )
       $_EXIT          ( $ "EXIT"                      )
       $_Undefined     ( $ "Undefined"                 )
       $_RAD           ( $ "RAD"                       )
       $_GRAD          ( $ "GRAD"                      )
       NEWLINE$        ( $ "\0a"                       )
       SPACE$          ( $ " "                         )

                                 Page 36



       6.  Hex & Character Strings

       6.1  Character Strings

       The following words are avaliable for character string
       manipulation:

       &$              ( $1 $2 --> $3 )
                         Appends $2 to $1
       !append$        ( $1 $2 --> $3 )
                         Same as &$, except that it will attempt the concatenation
                         "in place," if there is not enough memory for the new
                         string, and the target is in tempob.
       $>ID            ( $name --> Id )
                         Converts string object to name object
       &$SWAP          ( ob $1 $2 --> $3 ob )
                         Appends $2 to $1, then swaps result with ob )
       1-#1-SUB$       ( $ # --> $' )
                         Where $' = chars 1 thru #-1 of $
       >H$             ( $ chr --> $' )
                         Prepends chr to $
       >T$             ( $ chr --> $' )
                         Appends chr to $
       AND$            ( $1 $2 --> $1 AND $2 )
                         Bitwise logical AND of two strings
       APPEND_SPACE    ( $ --> $' )
                         Appends space to $
       Blank$          ( # --> $  )
                         Creates a string of # spaces
       CAR$            ( $ --> chr | $ )
                         Returns 1st chr of $ or NULL$ if $ is null
       CDR$            ( $ --> $' )
                         $' is $ minus first character.  Returns NULL$ if $ is null
       COERCE$22       ( $ --> $' )
                         If $ longer than 22 chars., truncates to 21 chars &
                         appends "..."
       DECOMP$         ( ob --> $ )
                         Decompiles object for stack display
       DO>STR          ( ob --> $ )
                         Internal version of ->STR
       DROPNULL$       ( ob --> NULL$ )
                         Drops object, returns zero-length string
       DUP$>ID         ( $name --> $name Id )
                         Dups, converts string object to name object
       DUPLEN$         ( $ --> $ #length )
                         Returns $ and its length
       DUPNULL$?       ( $ --> $ flag )
                         Returns TRUE if $ is zero-length
       EDITDECOMP$     ( ob --> $ )
                         Decompile object for editing
       JstGETTHEMESG   ( # --> $ )
                         Fetches message from message table
       ID>$            ( ID --> $name )
                         Converts name object to a string
       LAST$           ( $ # --> $' )
                         Returns last # chrs of $

                                 Page 37



       LEN$            ( $ --> #length )
                         Returns length of $
       NEWLINE$&$      ( $ --> $' )
                         Appends "\0a" to $
       NULL$           ( --> $ )
                         Returns empty string
       NULL$?          ( $ --> flag )
                         Returns TRUE if $ is zero-length
       NULL$SWAP       ( ob --> $ ob )
                         Swaps empty string into level 2
       NULL$TEMP       ( --> $ )
                         Creates empty string in TEMPOB
       OR$             ( $1 $2 --> $3 )
                         Bitwise logical OR of two strings
       OVERLEN$        ( $ ob --> $ ob #length )
                         Returns length of $ in level 2
       POS$            ( $search $find #start --> #pos )
                         Returns #pos (#0 if not found) of $find
                         within $search starting at head of $search
       POS$REV         ( $search $find #start --> #pos )
                         Returns #pos (#0 if not found) of $find
                         within $search starting at tail of $search
       PromptIdUtil    ( id ob -> $ )
                         Returns string in the form "id: ob"
       SEP$NL          ( $ --> $2 $1 )
                         Separate $ at newline character
       SUB$            ( $ #start #end --> $' )
                         Returns substring of $
       SUB$1#          ( $ #pos --> # )
                         Returns bint with value of character
                         in $ at position #pos
       SUB$SWAP        ( ob $ #start #end --> $' ob )
                         Returns substring of $ and swaps with ob
       SWAP&$          ( $1 $2 --> "$2$1" )
                         Appends $1 to $2
       TIMESTR         ( %date %time --> "WED 03/30/90 11:30:15A" )
                         Returns string time and date
                         (like user word TSTR)
       XOR$            ( $1 $2 --> $3 )
                         Bitwise logical XOR of two strings
       a%>$            ( % --> $ )
                         Converts % to $ using current display mode
       a%>$,           ( % --> $ )
                         Converts % to $ using current display mode
                         Same as a%>$, but with no commas
       palparse        ( $ --> ob TRUE         )
                       ( $ --> $ #pos $' FALSE )
                         Parse a string into an object and TRUE, or
                         returns position of error and FALSE

                                 Page 38



       6.2  Hex Strings

       #>%             ( hxs --> % )
                         Converts hxs to real
       %>#             ( % --> hxs )
                         Converts real to hxs
       &HXS            ( hxs1 hxs2 --> hxs3 )
                         Appends hxs2 to hxs1
       2HXSLIST?       ( { hxs1 hxs2 } --> #1 #2 )
                         Converts list of two hxs into two bints
                         Generates Bad Argument Value error for
                         invalid input
       HXS#HXS         ( hxs1 hxs2 --> %flag )
                         Returns %1 if hxs1 <> hxs2, otherwise %0
       HXS>#           ( hxs --> # )
                         Converts lower 20 bits of hxs into a bint
       HXS>$           ( hxs --> $ )
                         Does hxs>$, then appends base character
       HXS>%           ( hxs --> % )
                         Converts hex string to real number
       HXS<HXS         ( hxs1 hxs2 --> %flag )
                         Returns %1 if hxs1<hxs2, otherwise %0
       HXS>HXS         ( hxs1 hxs2 --> %flag )
                         Returns %1 if hxs1>hxs2, otherwise %0
       HXS>=HXS        ( hxs1 hxs2 --> %flag )
                         Returns %1 if hxs1>=hxs2, otherwise %0
       HXS<=HXS        ( hxs1 hxs2 --> %flag )
                         Returns %1 if hxs1<=hxs2, otherwise %0
       LENHXS          ( hxs --> #length )
                         Returns # of nibbles in hxs
       NULLHXS         ( --> hxs )
                         Returns zero-length hex string
       SUBHXS          ( hxs #m #n --> hxs' )
                         Returns substring

       User RPL binary integers are actually hex strings.  The
       following words assume 64-bit or shorter hex strings, and
       return results according to the current wordsize:

       bit/            ( hxs1 hxs2 --> hxs3 )
       Divides hxs1 by hxs2 bit%#/          ( % hxs --> hxs' )
                         Divides % by hxs, returns hxs
       bit#%/          ( hxs % --> hxs' )                   Divides
       hxs by %, returns hxs bit*            ( hxs1 hxs2 --> hxs3 )
                         Multiplies hxs1 by hxs2 bit%#*          (
       % hxs --> hxs' )                   Multiplies % by hxs,
       returns hxs bit#%*          ( hxs % --> hxs' )
                         Multiplies hxs by %, returns hxs
       bit+            ( hxs1 hxs2 --> hxs3 )
       Adds hxs1 to hxs2 bit%#+          ( % hxs --> hxs' )
                         Adds % to hxs, returns hxs
       bit#%+          ( hxs % --> hxs' )                   Adds
       hxs to %, returns hxs bit-            ( hxs1 hxs2 --> hxs3 )
                         Subtracts hxs2 from hxs1 bit%#-          (
       % hxs --> hxs' )                   Suptracts % from hxs,
       returns hxs bit#%-          ( hxs % --> hxs' )
                         Suptracts hxs from %, returns hxs

                                 Page 39



       bitAND          ( hxs1 hxs2 --> hxs3 )
       Bitwise logical AND bitASR          ( hxs --> hxs' )
                         Arithmetic shift right one bit
       bitOR           ( hxs1 hxs2 --> hxs3 )
       Bitwise logical OR bitNOT          ( hxs1 hxs2 --> hxs3 )
                         Bitwise logical NOT bitRL           ( hxs
       --> hxs' )                   Circular left shift by 1 bit
       bitRLB          ( hxs --> hxs' )                   Circular
       left shift by 1 byte bitRR           ( hxs --> hxs' )
                         Circular right shift by 1 bit
       bitRRB          ( hxs --> hxs' )                   Circular
       right shift by 1 byte bitSL           ( hxs --> hxs' )
                         Shift left by 1 bit bitSLB          ( hxs
       --> hxs' )                   Shift left by 1 byte
       bitSR           ( hxs --> hxs' )                   Shift
       right by 1 bit bitSRB          ( hxs --> hxs' )
                         Shift right by 1 byte bitXOR          (
       hxs1 hxs2 --> hxs3 )                   Bitwise logical XOR

       Wordsize control:

       WORDSIZE        ( --> # )                   Returns user
       binary integer wordsize dostws          ( # --> )
                         Stores binary wordsize hxs>$           (
       hxs --> $ )                   Converts hex string to chr
       string using the                   current display mode and
       wordsize

                                 Page 40



       7.  Real Numbers

       Real numbers are written with %, and extended real numbers
       are written with %%.

       7.1  Built-in Reals

       The following real and extended real numbers are built in:

       %%.1    %%4    %-8         %11    %21    %5
       %%.4    %%5    %-9         %12    %22    %6
       %%.5    %%60   %-MAXREAL   %13    %23    %7
       %%0     %%7    %-MINREAL   %14    %24    %8
       %%1     %-2    %.1         %15    %25    %MAXREAL
       %%10    %-3    %.5         %16    %26    %MINREAL
       %%12    %-4    %0          %17    %27    %PI
       %%2     %-5    %1          %180   %3     %e
       %%2PI   %-6    %10         %2     %360   %-1
       %%3     %-7    %100        %20    %4

       7.2  Real Number Functions

       In the stack diagrams below, %1 and %2 refer to two
       different real numbers, NOT the real numbers one and two.

       %%*             ( %%1 %%2 -->  %%3 )
                         Multiplies two extended reals
       %%*ROT          ( ob1 ob2 %%1 %%2 --> ob2 %%3 ob1 )
                         Multiplies two extended reals,
                         then does a ROT
       %%*SWAP         ( ob %%1 %%2 --> %%3 ob )
                         Multiplies two extended reals,
                         then does a SWAP
       %%*UNROT        ( ob1 ob2 %%1 %%2 --> %%3 ob1 ob2 )
                         Multiplies two extended reals,
                         then does an UNROT
       %%+             ( %%1 %%2 --> %%3 )
                         Adds two extended reals
       %%-             ( %%1 %%2 --> %%3 )
                         Subtraction
       %%ABS           ( %% --> %%' )
                         Absolute value
       %%ACOSRAD       ( %% --> %%' )
                         Arc-cosine using radians
       %%ANGLE         ( %%x %%y --> %%angle )
                         Angle using current angle mode from %%x %%y
       %%ANGLEDEG      ( %%x %%y --> %%angle )
                         Angle using degrees from %%x %%y

                                 Page 41



       %%ANGLERAD      ( %%x %%y --> %%angle )
                         Angle using radians from %%x %%y
       %%ASINRAD       ( %% --> %%' )
                         Arc-sine using radians
       %%CHS           ( %% --> %%' )
                         Change sign
       %%COS           ( %% --> %%' )
                         Cosine
       %%COSDEG        ( %% --> %%' )
                         Cosine using degrees
       %%COSH          ( %% --> %%' )
                         Hyperbolic cosine
       %%COSRAD        ( %% --> %%' )
                         Cosine using radians
       %%EXP           ( %% --> %%' )
                         e^x
       %%FLOOR         ( %% --> %%' )
                         Greatest integer <= x
       %%H>HMS         ( %% --> %%' )
                         Decimal hours to hh.mmss
       %%INT           ( %% --> %%' )
                         Integer part
       %%LN            ( %% --> %%' )
                         ln(x)
       %%LNP1          ( %% --> %%' )
                         ln(x+1)
       %%MAX           ( %%1 %%2 --> %%3 )
                         Returns greater of two %%s
       %%P>R           ( %%radius %%angle --> %%x %%y )
                         Polar to rectangular conversion
       %%R>P           ( %%x %%y --> %%radius %%angle )
                         Rectangular to polar conversion
       %%SIN           ( %% --> %%' )
                         Sine
       %%SINDEG        ( %% --> %%' )
                         Sine using degrees
       %%SINH          ( %% --> %%' )
                         Hyperbolic sine
       %%SQRT          ( %% --> %%' )
                         Square root
       %%TANRAD        ( %% --> %%' )
                         Tangent using radians
       %%^             ( %%1 %%2 --> %%3 )
                         Exponential
       %+              ( %1 %2 --> %3 )
                         Addition
       %+SWAP          ( ob %1 %2 --> %3 ob )
                         Addition, then SWAP
       %-              ( %1 %2 --> %3 )
                         Subtraction
       %1+             ( % --> %+1 )
                         Adds one
       %1-             ( % --> %-1 )
                         Subtracts one

                                 Page 42



       %>#             ( % --> hxs )
                         Converts real to binary integer
       %>%%            ( % --> %% )
                         Converts real to extended real
       %>%%-           ( %1 %2 --> %%3 )
                         Converts 2 % to %%, then subtracts
       %>%%1           ( %x --> %% )
                         Converts % to %%, then does 1/x
       %>%%ANGLE       ( %x %y --> %%angle )
                         Angle in current angle mode
       %>%%SQRT        ( % --> %% )
                         Converts % to %%, then sqrt(x)
       %>%%SWAP        ( ob % --> %% ob )
                         Converts % to %%, then SWAP
       %>C%            ( %real %imag --> C% )
                         Real to complex conversion
       %>HMS           ( % --> %hh.mmss )
                         Decimal hours to hh.mmss
       %ABS            ( % --> %' )
                         Absolute value
       %ABSCOERCE      ( % --> # )
                         Absolute value, convert to bint
       %ACOS           ( % --> %' )
                         Arc cosine
       %ACOSH          ( % --> %' )
                         Hyperbolic arc cosine
       %ALOG           ( % --> %' )
                         10^x
       %ANGLE          ( %x %y --> %angle )
                         Angle using current angle mode from %x %y
       %ASIN           ( % --> %' )
                         Arc sine
       %ASINH          ( % --> %' )
                         Hyperbolic arc sine
       %ATAN           ( % --> %' )
                         Arc tangent
       %ATANH          ( % --> %' )
                         Hyperbolic arc tangent
       %CEIL           ( % --> %' )
                         Next greatest integer
       %CH             ( %1 %2 --> %3 )
                         Percent change
       %CHS            ( % --> %' )
                         Change sign
       %COMB           ( %m %n -> %COMB(m,n) )
                         Combinations of m items taken n at a time
       %COS            ( % --> %' )
                         Cosine
       %COSH           ( % --> %' )
                         Hyperbolic cosine
       %D>R            ( % --> %' )
                         Degrees to radians
       %EXP            ( % --> %' )
                         e^x
       %EXPM1          ( $ --> %' )
                         e^x-1

                                 Page 43



       %EXPONENT       ( % --> %' )
                         Returns exponent
       %FACT           ( % --> %! )
                         Factorial
       %FLOOR          ( % --> %' )
                         Greatest integer <= x
       %FP             ( % --> %' )
                         Fractional part
       %HMS+           ( %1 %2 --> %3 )
                         HH.MMSS addition
       %HMS-           ( %1 %2 --> %3 )
                         HH.MMSS subtraction
       %HMS>           ( % --> %' )
                         Convert hh.mmss to decimal hours
       %IP             ( % --> %' )
                         Integer part
       %IP>#           ( % --> # )
                         IP(ABS(x) converted to binary integer
       %LN             ( % --> %' )
                         ln(x)
       %LNP1           ( % --> %' )
                         ln(x+1)
       %LOG            ( % --> %' )
                         Common log
       %MANTISSA       ( % --> %' )
                         Returns mantissa
       %MAX            ( %1 %2 --> % )
                         Returns larger of two reals
       %MAXorder       ( %1 %2 --> %larger %smaller )
                         Orders two numbers
       %MIN            ( %1 %2 --> % )
                         Returns smaller of two reals
       %MOD            ( %1 %2 --> %3 )
                         Returns %1 MOD %2
       %NFACT          ( % --> %' )
                         Factorial
       %NROOT          ( %1 %2 --> %3 )
                         Nth root
       %OF             ( %1 %2 --> %3 )
                         Returns percantage of %1 that is %2
       %PERM           ( %m %n --> %PERM(%m,%n) )
                         Returns permutations of %m items
                         taken %n at a time
       %POL>%REC       ( %x %y --> %radius %angle )
                         Rectangular to polar conversion
       %R>D            ( %radians --> %degrees )
                         Radians to degrees
       %RAN            ( --> %random )
                         Random number
       %RANDOMIZE      ( %seed --> )
                         Updates random number seed, uses the
                         system clock if %=0
       %REC>%POL       ( %radius %angle --> %x %y )
                         Polar to rectangular conversion
       %SGN            ( % --> %' )
                         Sign: -1, 0 or 1 returned depending
                         on the sign of the argument
       %SIN            ( % --> %' )

                                 Page 44



                         Sine
       %SINH           ( % --> %' )
                         Hyperbolic sine
       %SPH>%REC       ( %r %th %ph --> %x %y %z )
                         Spherical to rectangular conversion
       %SQRT           ( % --> %' )
                         Square root
       %T              ( %1 %2 --> %3 )
                         Percent total
       %TAN            ( % --> %' )
                         Tangent
       %TANH           ( % --> %' )
                         Hyperbolic tangent
       %^              ( %1 %2 --> %3 )
                         Exponential
       2%%>%           ( %%1 %%2 --> %1 %2 )
                         Extended real to real conversion
       2%>%%           ( %1 %2 --> %%1 %%2 )
                         Real to extended real conversion
       C%>%            ( C% --> %real %imag )
                         Complex to real conversion
       DDAYS           ( %date1 %date2 --> %diff )
                         Days between dates in DMY format
       DORANDOMIZE     ( % --> )
                         Updates random number seed
       RNDXY           ( %number %places --> %number' )
                         Rounds %number to %places
       TRCXY           ( %number %places --> %number' )
                         Truncates %number to %places
       SWAP%>C%        ( %imag %real --> C% )
                         Real to complex conversion

                                 Page 45



       8.  Complex Numbers

       Complex numbers are represented by C%, extended complex
       numbers by C%%.

       8.1  Built-in Complex Numbers

       C%0             (0,0)
       C%1             (1,0)
       C%-1            (-1,0)
       C%%1            (%%1,%%0)

       8.2  Conversion Words

       %>C%            ( %real %imag --> C% )
       %%>C%%          ( %%real %%imag --> C%% )
       %%>C%           ( %%real %%imag --> C% )
       C%>%            ( C% --> %real %imag )
       C%%>%%          ( C%% --> %%real %%imag )
       C%%>C%          ( C%% --> C% )
       C%>%%           ( C% --> %%real %%imag )
       C%>%%SWAP       ( C% --> %%imag %%real )
       C>Im%           ( C% --> %imag )
       C>Re%           ( C% --> %real )

       8.3  Complex Functions

       C%1/            ( C% --> C%' )
                         Inverse
       C%ABS           ( C% --> % )
                         Returns SQRT(x^2+y^2) from (x,y)
       C%ACOS          ( C% --> C%' )
                         Arc cosine
       C%ALOG          ( C% --> C%' )
                         Common antilog
       C%ARG           ( C% --> %)
                         Returns ANGLE(x,y) from (x,y)
       C%ASIN          ( C% --> C%' )
                         Arc sine
       C%ATAN          ( C% --> C%' )
                         Arc tangent
       C%C^C           ( C%1 C%2 --> C%3 )
                         Power
       C%CHS           ( C% --> C%' )
                         Change sign
       C%%CHS          ( C%% --> C%%' )
                         Change sign
       C%CONJ          ( C% --> C%' )
                         Conjugate
       C%%CONJ         ( C%% --> C%%' )
                         Conjugate

                                 Page 46



       C%COS           ( C% --> C%' )
                         Cosine
       C%COSH          ( C% --> C%' )
                         Hyperbolic cosine
       C%EXP           ( C% --> C%' )
                         e^z
       C%LN            ( C% --> C%' )
                         Natural logarithm
       C%LOG           ( C% --> C%' )
                         Common logarithm
       C%SGN           ( C% --> C%' )
                         Returns (x/SQRT(x^2+y^2),y/SQRT(x^2+y^2)
       C%SIN           ( C% --> C%' )
                         Sine
       C%SINH          ( C% --> C%' )
                         Hyperbolic sine
       C%SQRT          ( C% --> C%' )
                         Square root
       C%TAN           ( C% --> C%' )
                         Tangent
       C%TANH          ( C% --> C%' )
                         Hyperbolic tangent

                                 Page 47



       9.  Arrays

       The notation [array] represents a real or complex array.
       [arry%] and [arryC%] represent real and complex arrays,
       respectively.  {dims} means a list of array dimensions,
       which may be either { #cols } or { #rows #cols }.

       Unless otherwise indicated, the following words do NOT check
       for out-of-range conditions (i.e. elements specified that
       are not within the range of the current array).
       ARSIZE          ( [array] --> #elements )
                       ( [array] --> {dims} )
       GETATELN        ( # [array] --> ob TRUE )
                       ( # [array] --> FALSE ) (no such element)
       MAKEARRY        ( {dims} ob --> [array] )
                         Creates an unlinked array having the same
                         element type as ob.  All elements are
                         initialized to ob.
       MATCON          ( [arry%] % --> [arry%]' )
                       ( [arryC%] C% --> [arryC%]' )
                         Sets all elements in array to % or C%.
       MATREDIM        ( [array] {dims} --> [array]' )
       MATTRN          ( [array] --> [array]' )
       MDIMS           ( [1-D array] --> #m FALSE )
                       ( [2-D array] --> #m #n TRUE )
       MDIMSDROP       ( [2-D array] --> #m #n )
                         Don't use MDIMSDROP on a vector!
       OVERARSIZE      ( [array] ob --> [array] ob #elements )
       PULLREALEL      ( [arry%] # --> [arry%] % )
       PULLCMPEL       ( [arryC%] # --> [arryC%] C% )
       PUTEL           ( [arry%] % # --> [arry%]' )
                       ( [arryC%] C% # --> [arryC%] )
       PUTREALEL       ( [arry%] % # --> [arry%]' )
       PUTCMPEL        ( [arryC%] C% # --> [arryC%]' )

                                 Page 48



       10.  Composite Objects

       The words described in this chapter are used for
       manipulating composite objects - mainly lists and
       secondaries. In the notation below, the term "comp" refers
       to either any composite object.  The term "#n" refers to the
       number of objects in a composite object, and the term "#i"
       refers to the index of an object within a composite.  The
       term "flag" refers to TRUE or FALSE.

       &COMP           ( comp comp' --> comp'' ) comp is concatenated to comp'
       2Ob>Seco        ( ob1 ob2 --> :: ob1 ob2 ; )
       ::N             ( obn ... ob1 #n --> :: obn ... ob1 ; )
       ::NEVAL         ( obn ... ob1 #n --> ? )
                         Does ::N, then evaluates secondary
       >TCOMP          ( comp ob --> comp' ) ob is added to the tail of comp
       CARCOMP         ( comp --> ob )
                       ( comp --> comp )
                         Returns first object in the core of the
                         composite.  Returns an null comp if the
                         supplied composite is null.
       CDRCOMP         ( comp --> comp' )
                       ( comp --> comp )
                         Returns the core of the composite minus the
                         first object. Returns null comp if if the
                         supplied composite is null.
       DUPINCOMP       ( comp --> comp obn ... ob1 #n )
       DUPLENCOMP      ( comp --> comp #n )
       DUPNULLCOMP?    ( comp --> comp flag ) TRUE if comp is null.
       DUPNULL{}?      ( {list} --> {list} flag ) TRUE if {list} is null.
       EQUALPOSCOMP    ( comp ob --> #pos | #0 )
                         Returns the index of the first object in comp
                         matching (EQUAL) ob (see NTHOF also)
       Embedded?       ( ob1 ob2 --> flag )
                         Returns TRUE if ob2 is embedded in, or the
                         same as, ob1; otherwise returns FALSE.
       INCOMPDROP      ( comp --> obn ... ob1 )
       INNERCOMP       ( comp --> obn ... ob1 #n )
       INNERDUP        ( comp --> obn ... ob1 #n #n )
       LENCOMP         ( comp --> #n )
       NEXTCOMPOB      ( comp #offset --> comp #offset' ob TRUE )
                       ( comp #offset --> comp FALSE )
                         #offset is the nibble offset from the start
                         of the list to the Nth object in the list.
                         Returns a new #offset and the next object if
                         the next object is not SEMI, otherwise
                         returns the list and FALSE.  Use #5 at the
                         start of the list.
       NTHCOMDDUP      ( comp #i --> ob ob )
       NTHCOMPDROP     ( comp #i --> ob )
       NTHELCOMP       ( comp #i --> ob TRUE )
                       ( comp #i --> FALSE )
                         Returns FALSE if #i is out of range
       NTHOF           ( ob comp --> #i | #0 ) Same as SWAP EQUALPOSCOMP.
       NULL::          ( --> :: ; ) (Returns null secondary)
       NULL{}          ( --> { } )  (Returns null list)

                                 Page 49



       ONE{}N          ( ob --> { ob } )
       Ob>Seco         ( ob --> :: ob ; )
       POSCOMP         ( comp ob pred --> #i | #0 )
                         If the specified object "matches" an element
                         of the specified composite, where "match" is
                         defined as the specified predicate returning
                         TRUE when applied to an element of the comp
                         and the object, then POSCOMP returns the left-
                         to- right index of the element within the
                         composite, or zero.  For instance, to find the
                         first real less than 5 in a list of reals:

                                   :: {list} 5 ' %< POSCOMP ;

       PUTLIST         ( ob #i {list} --> {list}' ) (Assumes 0<#i<=#n)
       SUBCOMP         ( comp #m #n --> comp' ) (Returns subcomposite)
                         IF #m > #n THEN comp' is null
                         IF #m=0    THEN #m is set to 1
                         IF #n=0    THEN #n is set to 1
                         IF #m > LEN(comp) THEN comp' is null
                         IF #n > LEN(comp) THEN #n is set to LEN(comp)
       SWAPINCOMP      ( comp obj --> obj obn ... ob1 #n )
       THREE{}N        ( ob1 ob2 ob3 --> { ob1 ob2 ob3 } )
       TWO{}N          ( ob1 ob2 --> { ob1 ob2 } )
       {}N             ( obn ... ob1 #n --> {list} )
       apndvarlst      ( {list} ob --> {list}' )
                         Adds ob to the list if ob is not found within
                         the list
       matchob?        ( ob comp --> ob TRUE )
                       ( ob comp --> FALSE )
                         Determines if ob is equal (EQUAL) to any element of comp

                                 Page 50



       11.  Tagged Objects

       The following words are available for manipulating tagged
       objects.  Remember that an object can have multiple tags.

       %>TAG           ( ob % --> tagged )
                         Tags ob with %

       >TAG            ( ob $ --> tagged )
                         Tags ob with $

       ID>TAG          ( ob id/lam --> tagged )
                         Tags ob with id

       STRIPTAGS       ( tagged --> ob )
                         Removes all tags

       STRIPTAGSl2     ( tagged ob' --> ob ob' )
                         Strips tags from level 2 object

       TAGOBS          ( ob $ --> tagged )
                       ( ob1 ... obn { $1 ... $n }
                         --> tagged1 ... taggedn )
                         Tags one object, or several objects
                         if a list of tags is in level 1

       USER$>TAG       ( ob $ --> tagged )
                         Tags ob with $ (up to 255 chrs valid)

                                 Page 51



       12.  Unit Objects

       When unit objects are compared for dimensional consistency,
       a hex string, called a "quantity string", may be extracted
       using the word U>NCQ.  This quantity string contains
       information about which units are contained, and can be
       directly compared with another quantity string.  If the
       quantity strings match, the two unit objects can be said to
       be dimensionally consistent.  U>NCQ also returns extended
       real numbers consisting of the number and a conversion
       factor to base units.

       U>NCQ           ( unit --> n%% cf%% qhxs )
                         Returns number, conversion factor,
                         and hex quantity string
       UM=?            ( unit1 unit2 --> %flag )
                         Returns %1 if two unit obs are equal
       UM#?            ( unit1 unit2 --> %flag )
                         Returns %1 if unit1 <> unit2
       UM<?            ( unit1 unit2 --> %flag )
                         Returns %1 if unit1 < unit2
       UM>?            ( unit1 unit2 --> %flag )
                         Returns %1 if unit1 > unit2
       UM<=?           ( unit1 unit2 --> %flag )
                         Returns %1 if unit1 <= unit2
       UM>=?           ( unit1 unit2 --> %flag )
                         Returns %1 if unit1 >= unit2
       UM>U            ( % unit --> unit' )
                         Replaces the number part of a unit object
       UM%             ( unit %percentage --> unit' )
                         Returns a percentage of a unit object
       UM%CH           ( unit1 unit2 --> % )
                         Returns percent difference
       UM%T            ( unit1 unit2 --> % )
                         Returns percentage fraction
       UM+             ( unit1 unit2 --> unit3 )
                         Addition
       UM-             ( unit1 unit2 --> unit3 )
                         Subtraction
       UM*             ( unit1 unit2 --> unit3 )
                         Multiply
       UM/             ( unit1 unit2 --> unit3 )
                         Divide
       UM^             ( unit1 unit2 --> unit3 )
                         Power
       UM1/            ( unit --> unit' )
                         Inverse
       UMABS           ( unit --> unit' )
                         Absolute value
       UMCHS           ( unit --> unit' )
                         Change sign
       UMCONV          ( unit1 unit2 --> unit1' )
                         Converts unit1 to units of unit2
       UMCOS           ( unit --> unit' )
                         Cosine
       UMMAX           ( unit1 unit2 --> unit? )

                                 Page 52



                         Returns larger of unit1 and unit2
       UMMIN           ( unit1 unit2 --> unit? )
                         Returns smaller of unit1 and unit2
       UMSI            ( unit --> unit' )
                         Convert to SI base units
       UMSIN           ( unit --> unit' )
                         Sine
       UMSQ            ( unit --> unit' )
                         Square
       UMSQRT          ( unit --> unit' )
                         Square root
       UMTAN           ( unit --> unit' )
                         Tangent
       UMU>            ( unit --> % unit' )
                         Returns number and normalized unit parts
                         of a unit object
       UMXROOT         ( unit1 unit2 --> unit3 )
                         unit1^1/unit2
       UNIT>$          ( unit --> $ )
                         Decompiles a unit object with tics

                                 Page 53



       13.  Temporary Variables and Temporary Environments

       One of the features implemented in RPL is the capability of
       creating temporary variables (aka "local variables", "lambda
       variables") whose names are given by the programmer, and
       which can be destroyed easily when they are no longer
       needed. These temporary variables serve a number of
       important purposes. First of all, they can be used to
       eliminate stack manipulations within a program, which makes
       the task of keeping track of the stack much easier, and
       makes debugging easier. In addition, they are essential for
       the implementation of programs which take an indefinite
       number of parameters and want to save one or more of those
       parameters.

       Temporary variables are referenced by temporary identifier
       objects ("local names"), and the binding between a temporary
       identifier object and its value is supported by structures
       in memory called temporary environments. (This is the RPL
       analogue of LISP "lambda binding").

       Temporary environments are stacked in chronological order.
       This allows the programmer the opportunity to create his own
       "private" temporary variables, without the possibility of
       interfering with those created by others. When a temporary
       identifier object is executed, a search is made through the
       stack of temporary environments, starting in the most
       recently created and working back through previous
       environments if necessary. When a match is made between the
       temporary identifier object being executed and a temporary
       identifier object in one of the temporary environments, the
       object bound to that identifier is pushed onto the data
       stack.  Executing an unbound temporary identifier object is
       an error condition.

       The processes of creating a temporary environment and
       assigning initial values to its temporary variables are
       accomplished simultaneously with the provided object BIND.
       BIND expects a list of temporary identifier objects on the
       top of the data stack and at least as many objects
       (excluding the list itself) on the stack as there are
       temporary identifier objects in the list. BIND will then
       create a temporary environment and bind each temporary
       identifier object in the list with an object on the stack,
       removing that object from the stack.

       Subsequent execution of any of the temporary identifier
       objects in the list will return the object bound to it.  The
       value bound to a temporary identifier object can be changed
       using STO in exactly the same manner as a value "bound" to
       an identifier object (global name).

       The dissolution of a temporary environment is accomplished
       with the provided object ABND (short for "abanbon"). ABND
       removes the top-most temporary environment from the stack of
       temporary environments. Individual temporary variables
       cannot be removed from a temporary environment; the
       temporary environment as a whole must be abandoned.

                                 Page 54



       Note that the RPL compiler does not check to see if there is
       an ABND to match each BIND.  You can include the two within
       a single program, or put them in separate programs as you
       like with no restrictions other than the requirements of
       good structured programming practice.  This also means that
       you must remember to include the ABND at some point,
       otherwise you may leave unnecessary environments around
       after a program has completed execution.  (In user RPL, you
       do not have such freedom.  The structure word -> has BIND
       built into it, and the command line parser demands that
       there be a matching >> or ' that includes ABND.)

       13.1  Structure of the Temporary Environment Area

       The structure of the temporary environment area is shown
       below.

                            --------------------------
                            |      Link Field        |-----+      (The first
                    ---------------------------------|     |       temporary
                    |   First Temporary Environment  |     |       environment
                    ----------------------------------     |       is that most
                                                           |       recently
                            --------------------------     |       created)
               +------------|      Link Field        |<----+
               |    ---------------------------------|
               |    |  Second Temporary Environment  |
               |    ----------------------------------
               .                       .
               .                       .
               .                       .
               |             -------------------------
               +-----------> |     Link Field        |-----+
                    ---------------------------------|     |
                    |    Last Temporary Environment  |     |
                    ----------------------------------     |
                                                           |
                             -------------------------     |
                             |          0            |<----+
                             -------------------------
                                                                (high memory)

                                 Page 55



       Each temporary environment consists of a protection word (a
       binary integer object body) which is used in error handling,
       followed by a sequence of one or more pairs of object
       pointers. The first object pointer in each pair is the
       address of a temporary identifier object and the second
       object pointer in each pair is the address of the object
       bound to that temporary identifier object. All of the object
       pointers in a temporary environment are updatable.  The
       structure of each temporary environment within the temporary
       environment area is shown below.

         -----------------------------------------------------  (lower addresses)
         |                Protection Word                    |
         |---------------------------------------------------|
         |        -> Temporary Identifier Object 1           |
         |---------------------------------------------------|
         | -> Object Bound to Temporary Identifier Object 1  |
         |---------------------------------------------------|
         |         -> Temporary Identifier Object 2          |
         |---------------------------------------------------|
         | -> Object Bound to Temporary Identifier Object 2  |
         |---------------------------------------------------|
         |                      .                            |
         |                      .                            |
         |                      .                            |
         |---------------------------------------------------|
         |         -> Temporary Identifier Object N          |
         |---------------------------------------------------|
         | -> Object Bound to Temporary Identifier Object N  |
         -----------------------------------------------------  (higher addresses)

                                 Page 56



       13.2  Named vs. Unnamed Temporary Variables

       Temporary variables are normally named by the corresponding
       temporary identifier in the list used by BIND.  The names in
       the list are used in the same order as the bound objects
       appear on the stack--the last identifier in the list
       corresponds to the object in level 1, the next-to-last
       identifier corresponds to the object in level 2, and so on.
       In the following example, the binary integer ONE is bound
       into Var1, and TWO is bound into Var2:

           ONE TWO
           {
             ' LAM Var1
             ' LAM Var2
           }
           BIND                ( Binds ONE into temporary variable Var1, and
                                  TWO into variable Var2 )
           ...
           LAM Var1            ( Recalls ONE from Var1 )
           ...
           LAM Var2            ( Recalls TWO from Var2 )
           ...
           ' LAM Var1 STO      ( Stores new object in Var1 )
           ...
           ABND                ( Abandons temp env. )

       Temporary identifiers may contain any text characters,
       except that you should not start the names with ' or # as
       such names are reserved for the built-in ROM programs.  For
       similar reasons, it is recommended that you use names that
       can not conflict with user-generated names; an easy way to
       insure this is to include an "illegal" character such as one
       of the object delimiters in your names.

                                 Page 57



       If there is NO CHANCE that another temporary environment
       will be created above the environment you are about to
       create, null names may be used to save memory.  There are a
       number of utility words that allow you to access local
       variables in the topmost environment by position number,
       which is faster than the ordinary name resolution.  For
       example, the example above would look like this:

         ::
           ONE TWO
           { NULLLAM NULLLAM }
           BIND                ( Binds ONE and TWO into nullnamed temporary
                                 variables )
           ...
           2GETLAM             ( Recalls ONE from first variable )
           ...
           1GETLAM             ( Recalls TWO from last variable )
           ...
           2PUTLAM             ( Stores new object in first variable )
           ...
           ABND                ( Abandons temp environment. )
         ;

       The numbering starts with the last temporary variable (i.e.
       in the same order as the stack level number).

                                 Page 58



       13.3  Provided Words for Temporary Variables

       The following words are provided for working with temporary
       variables.  The term "lamob" is used in this case to
       indicate an object recalled from a termporary variable.

       1ABNDSWAP       ( ob --> lamob ob )
                         Does :: 1GETLAM ABND SWAP ;
       1GETABND        ( --> lamob )
                         Does :: 1GETLAM ABND ;
       1GETLAM
        ...            ( --> ob )
       22GETLAM         Returns contents of Nth lam

       1GETSWAP        ( ob --> lamob ob )
                         Does :: 1GETLAM SWAP ;
       1LAMBIND        ( ob --> )
                         Does :: 1NULLLAM{} BIND ;
       1NULLLAM{}      ( --> { NULLLAM } )
                         Returns list with one null lam
       1PUTLAM
        ...            ( ob --> )
       22PUTLAM        ( Stores ob into Nth lam

       2GETEVAL        ( --> ? )
                         Recalls & evaluates ob in 2nd lam
       @LAM            ( id --> ob TRUE )
                       ( id --> FALSE )
                         Recalls lam by name, returns ob and
                         TRUE if id exists; FALSE otherwise
       ABND            ( --> )
                         Abandons topmost temp var env.
       BIND            ( ob ... { id ... } --> )
                         Creates new temp var env.
       CACHE           ( obn ... ob1 n lam --> ) Saves away n objects plus the count
                         n in a temporary environment, each object being bound to
the
                         same identifier lam.  The last pair has the count. )
       DUMP            ( NULLLAM --> ob1..obn n ) DUMP is essentially the inverse of
                         CACHE, BUT: it ONLY works with NULLLAM as the cached name,
                         and it ALWAYS does a garbage collect.
       DUP1LAMBIND     ( ob --> ob )
                         Does DUP, then 1LAMBIND
       DUP4PUTLAM      ( ob --> ob )
                         Does DUP, then 4PUTLAM
       DUPTEMPENV      ( --> )
                         Duplicates topmost temporary env.,
                         clearing the protection word.
       GETLAM          ( #n --> ob )
                         Returns object in #nth temp var
       NULLLAM         ( --> NULLLAM )
                         Null temporary variable name
       PUTLAM          ( ob #n --> )
                         Stores ob in #nth temp var
       STO             ( ob id --> )
                         Stores ob in named global/temp var
       STOLAM          ( ob id --> )
                         Stores ob in named temp var

                                 Page 59



       13.4  Coding Suggestions

       The DEFINE feature of the RPL compiler can be used to
       combine the legibility of named variables with the speed and
       efficiency of null-named variables.  For example:

         DEFINE RclCode  1GETLAM
         DEFINE StoCode  1PUTLAM
         DEFINE RclName  2GETLAM
         DEFINE StoName  2PUTLAM
         ::
           ...
           { NULLLAM NULLLAM }
           BIND                ( Binds two objects into nullnamed
                                  temp variables 1 and 2 )
           ...
           RclCode             ( Recalls contents of last variable )
           ...
           RclName             ( Recalls contents of first variable )
           ...
           StoCode             ( Stores object in first variable )
           ...
           ABND                ( Abandons temp environment. )
         ;

       If a large number of temporary variables are to be used
       without names, here is a code-saving tip:

       Replace:

               ...
               {
                 NULLLAM NULLLAM NULLLAM NULLLAM
                 NULLLAM NULLLAM NULLLAM NULLLAM
                 NULLLAM NULLLAM NULLLAM NULLLAM
                 NULLLAM NULLLAM NULLLAM NULLLAM
                 NULLLAM NULLLAM NULLLAM NULLLAM
                 NULLLAM NULLLAM NULLLAM NULLLAM
               } BIND
               ...

       With:

               NULLLAM TWENTYFOUR NDUPN
               {}N BIND

       The first method takes 67.5 bytes, whereas the latter method
       takes 12.5 bytes, so there's a savings of 55 bytes!

       You can also use TWENTYFOUR ' NULLLAM CACHE, which is
       shorter yet and does not require building the list of null
       identifiers in tempob.  Note, however, that CACHE adds an
       extra temporary variable (to hold the count), so all of the
       variable position numbers differ by one from the previous
       methods.

                                 Page 60



       14.  Checking Arguments

       Any program object which can be executed directly by a user
       should insure that the correct number and types of arguments
       are present to prevent problems.  If the object is
       ultimately to be a library command, then it should follow
       the command structure convention (see section xxx):

               :: CK0 ... ; for 0 argument commands, or

               :: CK<n>&Dispatch type1 action1
                                 type2 action2
                                      ...
                                 typen actionn
               ;

               for <n> argument commands, where typei is a type
       code and
               actioni is the corresponding dispatchee for that
       type combination, or

               :: CKN ... ;  for commands that take an number of
       arguments specified
               by a real number in level 1 (like PICK or ->LIST).

       CK<n>&Dispatch is actually a combination of CK<n> and
       CK&DISPATCH1.  There are a few built-in commands (e.g. TYPE)
       that use the two words instead of the combined form, but all
       algebraic functions must use CK<n>&Dispatch since these
       words also serve to identify the argument count used by a
       function.

       If an object is not intended as a library command, then it
       should have the following structure:

               :: CK0NOLASTWD ... ; for 0 argument programs, or

               :: CK<n>NOLASTWD CK<n>&DISPATCH1 type1 action1
                                 type2 action2
                                      ...
                                 typen actionn
               ;

               for <n> argument programs, or

               :: CKNNOLASTWD ... ; for programs that take
       arguments as specified
               in level 1.

                                 Page 61



       14.1  Number of Arguments

       The following words verify that from 0-5 arguments are on
       the stack, and issue the "Too Few Arguments" error
       otherwise.

       CK0, CK0NOLASTWD                No arguments required
       CK1, CK1NOLASTWD                One argument required
       CK2, CK2NOLASTWD                Two arguments required
       CK3, CK3NOLASTWD                Three arguments required
       CK4, CK4NOLASTWD                Four arguments required
       CK5, CK5NOLASTWD                Five arguments required

       Each word CK<n>... "marks" the stack below the <n>th argument, and
       if argument recovery is in effect, saves a copy of the <n> arguments in the
       last argument save area.  If an error
       occurs that is handled by the outer loop error handler, then the stack
       is cleared to the marked level (this removes any stray objects that
       were not put there by the user).  If the argument recovery system is active,
       then the saved arguments are restored to the stack.

       Any CK<n> also records the command in which it is executed, again for the
       sake of the outer loop error handler, which uses the command name as
       part of the error message display.  A CK<n> should only be used in
       library commands, and must be the first object in the command program.
       CK<n>NOLASTWD does not record the command, and may be used at any point.
       However, it generally not a good idea to execute these words except

       * at the beginning of a user-executed object, or

       * immediately after the execution of any user procedure.

       User procedures should only be executed when the stack contains only user
       objects; the CK<n>NOLASTWD (usually CK0NOLASTWD)
       is executed immediately after the user procedure
       to update the stack save mark to protect the stack results of the procedure.
       This is usually done in conjunction with 0LASTOWDOB!, which clears
       the command save done by the last CK<n> executed within the user
       procedure, so that that command is not identified as the culprit for
       any subsequent errors.  Useful words for these purposes are

               AtUserStack     which is :: CK0NOLASTWD 0LASTOWDOB! ;
               CK1NoBlame      which is :: 0LASTOWDOB! CK1NOLASTWD ;

       For objects that take a stack specified number of arguments, the analogs
       to CK<n> and CK<n>NOLASTWD are CKN and CKNNOLASTWD.  Both words check
       for a real number in level 1, then check if there are that many additional
       objects on the stack.  The stack is marked at level 2, and only the
       real number is restore by LAST ARG.

                                 Page 62



       14.2  Dispatching on Argument Type

       The words CK&DISPATCH1 and CK&DISPATCH0 provide a dispatch-
       by-type mechanism (the CK<n>&Dispatch words include the same
       mechanism, so the following discussion applies to them as
       well), that provides straightforward branching according to
       the object types of up to five arguments at a time.  Each
       word is followed by an indefinite number of pairs of object.
       Each pair consists of a binary integer or object pointer to
       a binary integer, followed by any object or object pointer
       (exclusive use of object pointers guarantees the fastest
       dispatching):

         ...
         CK&DISPATCH1   #type1 action1                  #type2
       action2                   ...                   #typen
       action3
         ;

       The object-pair sequence must be terminated by a SEMI (;).

       CK&DISPATCH1 proceeds as follows: For each typei, from type1
       to typen, if typei matches the stack configuration then
       execute actioni, discarding the rest of word containing
       CK&DISPATCH1.  If no match is found, report the error "Bad
       Argument Type".

       If a complete pass is made through the table without a
       successful match, the CK&DISPATCH1 makes a second pass
       through the table, this time stripping any tags from stack
       objects and matching the remaining objects against the
       required types.

                                 Page 63



       The word CK&DISPATCH0 does not perform the second pass which
       strips tags.  This word should only be used where it is
       important to find a tagged object.  The general behavior of
       the HP 48 is to regard tags as being auxiliary to the tagee,
       and thus CK&DISPATCH1 should be used in most cases.

       A binary integer typei is nominally encoded as follows:

               #nnnnn
                |||||
                ||||+-- Level 1 argument type
                |||+--- Level 2 argument type
                ||+---- Level 3 argument type
                |+----- Level 4 argument type
                +------ Level 5 argument type

       Each "n" is a hexadecimal digit representing an object type,
       as shown in the table below.  Thus #00011 represents two
       real numbers; #000A0 indicates a symbolic class object
       (symb, id, or lam) in level 2 and any type of object in
       level 1.  There are also two-digit object type numbers,
       ending in F; use of any of these consequently reduces the
       total number of arguments that can be encoded in a single
       typei integer.  For example, #13F4F represents a real number
       in level 3, an extended real in level 2, and an extended
       complex in level 1.

       The following table shows the hex digit values for each
       argument type.  The column "# name" shows the object pointer
       name for the corresponding binary integer that may be used
       for a single argument function.  The "Binary Integers"
       chapter contains a list of built-in binary integers that may
       be used for various common two-argument combinations.

               Value   Argument           # name   User TYPE
               -----   ----------------   ------   ---------
                 0     Any Object          any
                 1     Real Number         real         0
                 2     Complex Number      cmp          1
                 3     Character String    str          2
                 4     Array               arry       3,4
                 5     List                list         5
                 6     Global Name         idnt         6
                 7     Local Name          lam          7
                 8     Secondary           seco         8
                 9     Symbolic            symb         9
                 A     Symbolic Class      sym      6,7,9
                 B     Hex String          hxs         10
                 C     Graphics Object     grob        11
                 D     Tagged Object       TAGGED      12
                 E     Unit Object         unitob      13
                0F     ROM Pointer                     14
                1F     Binary Integer                  20
                2F     Directory                       15
                3F     Extended Real                   21
                4F     Extended Complex                22

                                 Page 64



                5F     Linked Array                    23
                6F     Character                       24
                7F     Code Object                     25
                8F     Library                         16
                9F     Backup                          17
                AF     Library Data                    26
                BF     External object1                27
                CF     External object2                28
                DF     External object3                29
                EF     External object4                30

                                 Page 65



       14.3  Examples

       Built-in commands and other words provide good examples of
       the check-and- dispatching scheme.  The following is the
       definition of the user command STO:

       :: CK2&Dispatch
           THIRTEEN  XEQXSTO                    ( 2:any object 1:tagged object)
           SIX       :: STRIPTAGSl2 ?STO_HERE ; ( 2:any        1:id )
           SEVEN     :: STRIPTAGSl2 STO ;       ( 2:any        1:lam )
           NINE      :: STRIPTAGSl2 SYMSTO ;    ( 2:any        1:symb )
           # 000c8   PICTSTO                    ( 2:grob       1:program [PICT] )
           # 009f1   LBSTO                      ( 2:backup ob  1:real number )
           # 008f1   LBSTO                      ( 2:library    1:real number )
       ;

       Since STO is a command, it starts with CK2&Dispatch, which
       verifies that there are two arguments present, saves those
       arguments and the command STO for error handling, then
       dispatches to one of the action objects listed in the
       dispatch table.  If the level one object is tagged, STO
       dispatches to the word XEQSTO.  For a global name (id), STO
       executes :: STRIPTAGSl2 ?STO_HERE ;, which is directly
       embedded in the STO program.  And so forth, down to the last
       choice, which is a dispatch to LBSTO when the arguments are
       a library in level 2, and a real number in level 1.

       The TYPE command provides an example of dispatching at a
       point other than the start of a command.  TYPE is a command,
       but its argument counting and argument type dispatching are
       separated so that the latter part can be called by other
       system words that don't want to mark the stack:

       ::
         CK1
         :: CK&DISPATCH0
               real             %0
               cmp              %1
               str              %2
               arry             XEQTYPEARRY
               list             %5
               id               %6
               lam              %7
               seco             TYPESEC ( 8, 18, or 19 )
               symb             %9
               hxs              %10
               grob             % 11
               TAGGED           % 12
               unitob           % 13
               rompointer       % 14
               THIRTYONE ( # )  % 20
               rrp              % 15
               # 3F ( %% )      % 21
               # 4F ( C%% )     % 22
               # 5F ( LNKARRY ) % 23
               # 6F ( CHR )     % 24
               # 7F ( CODE )    % 25
               library          % 16

                                 Page 66



               backup           % 17
               # AF             % 26 ( Library Data )
               any              % 27 ( external )
         ;
         SWAPDROP
       ;

       CK&DISPATCH0 is used here, although CK&DISPATCH1 would work
       as well since tagged objects are explicitly listed in the
       dispatch table.  Notice also that the last typei is "any",
       meaning that type 27 is returned for any object type not
       previously listed.

       The "inner" program (starting after the CK1) is the body of
       the system word XEQTYPE.

                                 Page 67



       15.  Loop Control Structures

       Two types of looping structures are available - indefinite
       loops and definite loops.

       15.1  Indefinite Loops

       Indefinite loops are constructed from combinations of the
       following RPL words:

          BEGIN ( --> )
          Copies the interpreter pointer (RPL variable I) onto the return stack.
          Also called IDUP.

          UNTIL ( flag --> )
          If flag is TRUE, drops the top pointer on the return stack, otherwise
          copies that pointer to the interpreter pointer.

          WHILE ( flag --> )
          If the flag is TRUE, then does nothing.  Else drops the first pointer from
          the return stack, and skips the interpreter pointer past the next two
          objects.

          REPEAT ( --> )
             -->
          Copies the first pointer on the return stack to the interpreter pointer.

          AGAIN ( --> )

       The WHILE loop is an indefinite loop:

               BEGIN
                 <test clause>
               WHILE
                 <loop object>
               REPEAT

       The WHILE loop executes <test clause>, and if the result is
       the system flag TRUE, executes the <loop object> and
       repeats; otherwise it exits to past the REPEAT.  The WHILE
       loop never executes if the first run of <test clause>
       returns FALSE.

       The action of WHILE requires <loop object> to be a single
       object.  However, the RPL compiler automatically combines
       multiple objects between WHILE and REPEAT into a program
       object, so that

               BEGIN
                 <test clause>
               WHILE
                 ob1 ... obn
               REPEAT

       is actually compiled as

                                 Page 68



               BEGIN
                 <test clause>
               WHILE
                 :: ob1 ... obn ;
               REPEAT

       Another common indefinite loop is the BEGIN...UNTIL:

               BEGIN
                 <loop clause>
               UNTIL

       This loop executes at least once, as opposed to the WHILE
       loop, which does not execute its loop object if the initial
       test is false.  The word UNTIL expects a flag (TRUE or
       FALSE).

       The BEGIN...AGAIN loop has no test:

               BEGIN
                 <loop clause>
               AGAIN

       Terminating this loop requires an error event, or a direct
       manipulation of the return stack.

                                 Page 69



       15.2  Definite Loops

       Definite loops with a loop counter are achieved in RPL by
       means of the DO Loop.  The word DO takes two binary integer
       objects from the stack, and stores the top object as the
       index and the other as the stopping value in a special
       DoLoop environment.  DO also copies the interpreter pointer
       onto the return stack.  DoLoop environments are stacked, so
       that they can be nested indefinitely.  The topmost index is
       recalled by INDEX@; the index in the second environment by
       JINDEX@.  The topmost stopping value is available via
       ISTOP@.

       DO's counterparts are LOOP and +LOOP.  LOOP increments the
       index value in the topmost DoLoop environment; then, if the
       (new) value is greater than or equal to the stopping value,
       LOOP drops the top pointer from the return stack and removes
       the topmost DoLoop environment.  Otherwise, LOOP acts copies
       the top return stack pointer to the interpreter pointer.
       The standard form of a DoLoop is

                    stop start DO <loop clause> LOOP,

       which executes <loop clause> for each value of an index from
       start to stop-1.

       +LOOP is similar to LOOP, except that it takes a binary
       integer from the stack and increments the loop counter by
       that amount rather than 1.

       15.2.1  Provided_Words

       The following words are provided for use with DO loops.
       Words marked with * are not recognized as special by the RPL
       compiler, so you should include compiler directives to
       prevent warning messages.  For example, #1+_ONE_DO can be
       followed by (DO) which matches the following LOOP for the
       sake of the compiler but does not generate any compiled
       code.

       #1+_ONE_DO *    ( #finish --> )
                         Equivalent to #1+ ONE DO; commonly used to execute a loop
                         #finish times.
       DO              ( #finish #start --> )
                         Begins DO loop
       DROPLOOP *      ( ob --> )
                         Performs DROP, then LOOP
       DUP#0_DO *      ( # --> # )
                         Begins # ... #0 DO loop
       DUPINDEX@       ( ob --> ob ob #index )
                         Does DUP, then returns value of index in topmost DoLoop
env.
       ExitAtLOOP      ( --> )
                         Stores zero in stopping value of topmost DoLoop environment
       INDEX@          ( --> #index )
                         Returns index of topmost DoLoop environment
       INDEX@#-        ( # --> #' )
                         Subtracts index value of topmost

                                 Page 70



                         DoLoop environment from #
       INDEXSTO        ( # --> )
                         Stores # as index of top DoLoop environment
       ISTOP@          ( --> #stop )
                         Returns stop value of the topmost DoLoop environment
       ISTOPSTO        ( # --> )
                         Stores new stop value in the topmost DoLoop environment
       JINDEX@         ( --> #index )
                         Returns index of second DoLoop environment
       LOOP            ( --> )
                         End of loop structure
       NOT_UNTIL *     ( flag --> )
                         End of loop structure
       ONE_DO *        ( #finish --> )
                         Begins #1...#finish DO loop
       OVERINDEX@      ( ob1 ob2 --> ob1 ob2 ob1 #index )
                         Does OVER, then returns value of
                         index in topmost DoLoop environment
       SWAPINDEX@      ( ob1 ob2 --> ob2 ob1 #index )
                         Does SWAP, then returns value of index in topmost
                         DoLoop environment
       SWAPLOOP *      ( ob1 ob2 --> ob2 ob1 )
                         Does SWAP, then LOOP
       ZEROISTOPSTO    ( --> )
                         Stores zero as the stop value in the topmost DoLoop
                         environment
       ZERO_DO *       ( #finish --> )
                         Begins DO loop from #0 to #finish
       toLEN_DO        ( {list} --> {list} )
                         Begins DO loop from #1 of elements in list to stop value
                         #number-of-elements+1.

       15.2.2  Examples

               FIVE ZERO
               DO
                 INDEX@
               LOOP

       This returns the values:

               #00000 #00001 #00002 #00003 #00004

       The following sequence displays each of the elements (up to 8) of
       a list of strings on a separate display line.

               DUPLENCOMP
               ONE_DO (DO)
                 DUP INDEX@ NTHCOMPDROP
                 INDEX@ DISPN
               LOOP

                                 Page 71



       A more compact version uses toLEN_DO:

               toLEN_DO (DO)
                 DUP INDEX@ NTHCOMPDROP
                 INDEX@ DISPN
               LOOP

       Another version is slightly faster, since it avoids repeated extraction
       of list elements:

               INNERCOMP
               #1+_ONE_DO (DO)
                 INDEX@ DISPN
               LOOP

       This version displays the elements in reverse order relative to the previous
       versions.

                                 Page 72



       16.  Error Generation & Trapping

       The RPL error handling sub-system is invoked by execution of
       the word ERRJMP, that is, when a procedure class object
       wishes to generate an error, it executes ERRJMP (probably
       after setting the values of ERROR and ERRNAME). The
       mechanics of ERRJMP will be described later.

       16.1  Trapping: ERRSET and ERRTRAP

       RPL provides procedure objects with the capability to
       intercept execution of the error handling sub-system, that
       is, trap an error generated by an object which is lower on
       the threaded order. This capability is made available via
       the built-in objects ERRSET and ERRTRAP used in the
       following way:

       :: ... ERRSET <suspect object> ERRTRAP <if-error object> ... ;

       In the above, an error generated by <suspect object> is to
       be trapped.  <if-error object> denotes the object to be
       executed if <suspect object> generates an error. The exact
       algorithm is: If <suspect object> generates an error, then
       continue execution at <if-error object>; else, continue
       execution beyond <if-error object>.

       The action of <if-error object> is completely flexible; when
       <if-error object> gets control, it may examine the values of
       ERROR and ERRNAME to determine whether or not it is even
       concerned with the current error. If not, it may simply re-
       start the sub-system by executing ERRJMP. If so, it may
       decide to handle the error, that is, clear both ERROR and
       ERRNAME and NOT restart the sub-system. It may also disable
       execution of the remainder of the program (perhaps via
       RDROP).

       Note that throughout (normal) execution of <suspect object>,
       an object pointer to the following ERRTRAP is somewhere in
       the runstream.

       16.2  Action of ERRJMP

       When an RPL procedure wants to initiate an error, it
       executes ERRJMP, which the error handling sub-system.
       ERRJMP cycles through the RUNSTREAM from the interpreter
       pointer I up through the return stack searching for an error
       trap. Specifically, ERRJMP removes pending program bodies
       from the RUNSTREAM until it finds one whose first element is
       an object pointer addressing ERRTRAP (this program body may
       correspond to a return stack level as well as the
       interpreter pointer I). It then SKIPs over the object
       pointer to ERRTRAP and continues execution beyond it (at the
       <if-error object>).

       Note, therefore, that ERRTRAP is only executed if <suspect
       object> terminates without generating an error; in this

                                 Page 73



       case, ERRTRAP will, among other things, SKIP <if-error
       object> and continue execution beyond it.

       If a procedure is not merely passing along an error that it
       did not initiate, its invokation of ERRJMP should be
       preceded by execution of ERRORSTO, which stores an error
       number in a special system location.  ERROR@ returns the
       stored error number, which error traps can use to determine
       if they want to handle a particular error.  The error number
       is stored and returned as a binary integer; the high-order
       12 bits of the number represent the Library ID of the
       library containing the error message, and the remaining bits
       indicate the error number within the library's message
       table.

       16.3  The Protection Word

       Each temporary environment and each DoLoop environment has a
       protection word. The sole reason for the existence of this
       protection word is to allow the error handling sub-system to
       distinguish temporary and DoLoop environments that were in
       existence at the time an error trap was set from those which
       came into being after the error trap was set. For example,
       consider the following:

       ::
         ...
         { NULLLAM } BIND
         ...
         TEN ZERO DO
           ERRSET ::
             ...
             { NULLLAM } BIND
             ...
             FIVE TWO DO
               <procedure>
             LOOP
             ABND
           ;
           ERRTRAP
             :: "Procedure Failed" FlashMsg ;
         LOOP
         ...
         ABND
         ...
       ;

       If <procedure> generates an error, then this error will be
       trapped by the word or secondary following ERRTRAP.
       However, the inner DoLoop and temporary environments must be
       deleted so that the outer procedure has available the
       correct DoLoop parameters and local variables.  The
       protection word serves to abet this function.

       ERRSET increments the protection word in the topmost

                                 Page 74



       temporary environment and the topmost DoLoop environment.
       These topmost environments therefore have a non-zero
       protection word. (DO and BIND always initialize the
       protection word to zero).

       ERRTRAP and ERRJMP delete temporary and DoLoop environments
       (from the first to the last) until, in both cases, they find
       one with a non-zero protection word, which is then
       decremented. Therefore, whenever either ERRJMP executes at
       <if-error object> or ERRTRAP executes past <if-error
       object>, only temporary and DoLoop environments which
       existed at the ERRSET will be present.

       Note especially that the protection word is more than just a
       switch so as to allow a practically indeterminant level of
       nesting of error traps.

       The example above is actually a poorly formed error trap -
       the code should actually determine what the error was, and
       take action accordingly.  The word ERROR@ may be used to
       recall which error occurred.  The error numbers correspond
       to the message numbers - see the message table in appendix A
       of the "HP48 Programmers Reference Manual".

       16.4  Error Words

       The following words are provided for error management:

       ABORT           ( --> )
                         Does ERRORCLR and ERRJMP
       DO#EXIT         ( msg# --> )
                         Stores a new error number and executes ERRJMP;
                         also executes AtUserStack
                         Puts the object ERRJMP on the stack
       ERRBEEP         ( --> )
                         Generates an error beep
       ERRJMP          ( --> )
                         Invokes error handling subsystem
       ERROR@          ( --> # )
                         Returns the current error number
       ERRORCLR        ( --> )
                         Stores zero as the error number
       ERROROUT        ( # --> )
                         Stores a new error number and does ERRJMP
       ERRORSTO        ( # --> )
                         Stores new error number
       ERRTRAP         ( --> )
                         Skips next object in runstream.

                                 Page 75



       17.  Test and Control

       This chapter reviews words related to the flow of control:
       conditional and unconditional branches and the associated
       test words.

       17.1  Flags and Tests

       TRUE and FALSE are built-in objects that are recognized by
       test words as flags for branching decisions. The following
       words create or combine flags:

       AND ( flag1 flag2  --> flag )
         If flag1 and flag2 are both TRUE then TRUE else FALSE.

       FALSE ( --> FALSE )
         Puts the FALSE flag on the stack.

       FALSETRUE       ( --> FALSE TRUE )

       FalseFalse      ( --> FALSE FALSE )

       OR ( flag1 flag2  --> flag )
         If either flag1 or flag2 is TRUE then TRUE else FALSE.

       ORNOT           ( flag1 flag2 --> flag3 )
         Logical OR followed by logical NOT.

       NOT ( flag --> flag' )
         If flag is TRUE then FALSE else TRUE.

       NOTAND          ( flag1 flag2 --> flag3 )
         Logical NOT, then logical AND.

       ROTAND          ( flag1 ob flag2 --> ob flag3 )
         Does ROT, then logical AND.

       TRUE            ( --> TRUE )
         Puts the TRUE flag on the stack.

       TrueFalse       ( --> TRUE FALSE )

       TrueTrue        ( --> TRUE TRUE )

       XOR             ( flag1 flag2  --> flag )
         If both flag1 and flag2 are either TRUE or FALSE then FALSE, else TRUE.

       COERCEFLAG      ( TRUE --> %1 )
                       ( FALSE --> %0 )
         Converts a system flag to a real number flag.

                                 Page 76



       17.1.1  General_Object_Tests

       The following words test object type and equality:

       EQ              ( ob1 ob2 --> flag )
         If objects ob1 and ob2 are the same object, i.e.  occupy the same
         physical space in memory, then TRUE else FALSE.

       EQUAL           ( ob1 ob2 --> flag )
         where ob1 and ob2 are not primitive code objects. If objects ob1 and
         ob2 are the same then TRUE else FALSE (this word is the system
         equivalent of the user RPL command SAME)

       2DUPEQ          ( ob1 ob2 --> ob1 ob2 flag )
         Returns TRUE if ob1 and ob2 have  the same physical address.

       EQOR            ( flag1 ob1 ob2 --> flag2 )
         Does EQ, then logical OR.

       EQUALOR         ( flag1 ob1 ob2 --> flag2 )
         Does EQUAL, the logical OR.

       EQOVER          ( ob1 ob2 ob3 --> ob1 flag ob1 )
         Does EQ, then OVER.

       EQUALNOT        ( ob1 ob2 --> flag )
         Returns FALSE if ob1 is equal to ob2.

       The following words test an object's type.  Words of the
       form TYPE...?  have a stack diagram ( ob --> flag ); those
       of the form DTYPE...? or DUPTYPE...? duplicate the object
       first ( ob --> ob flag ).

       Test Words              Object type

       TYPEARRY?               array
       DTYPEARRY?
       DUPTYPEARRY?

       TYPEBINT?               binary integer
       DUPTYPEBINT?

       TYPECARRY?              complex array

       TYPECHAR?               character
       DUPTYPECHAR?

       TYPECMP?                complex number
       DUPTYPECMP?

       TYPECOL?                program
       DTYPECOL?
       DUPTYPECOL?

                                 Page 77



       TYPECSTR?               string
       DTYPECSTR?
       DUPTYPECSTR?

       TYPEEXT?                unit
       DUPTYPEEXT?

       TYPEGROB?               graphics object
       DUPTYPEGROB?

       TYPEHSTR?               hex string
       DUPTYPEHSTR?

       TYPEIDNT?               identifier (global name)
       DUPTYPEIDNT?

       TYPELAM?                temporary identifier (local name)
       DUPTYPELAM?

       TYPELIST?               list
       DTYPELIST?
       DUPTYPELIST?

       TYPERARRY?              real array

       TYPEREAL?               real number
       DTYPEREAL?
       DUPTYPEREAL?

       TYPEROMP?               ROM pointer (XLIB name)
       DUPTYPEROMP?

       TYPERRP?                Directory
       DUPTYPERRP?

       TYPESYMB?               Symbolic
       DUPTYPESYMB?

       TYPETAGGED?             Tagged
       DUPTYPETAG?

       17.1.2  Binary_Integer_Comparisons

       The following words compare binary integers, returning TRUE
       or FALSE. Equality is tested in the sense of EQUAL (not EQ).
       Ordering treats all binary integers as unsigned.  Some of
       these words are also available in combination with case
       words (see below).

       #=      ( # #' --> flag )       TRUE if # = #'.

       #<>     ( # #' --> flag )       TRUE if # <> #' (not equal).

       #0=     ( # --> flag )          TRUE if # = 0

                                 Page 78



       #0<>    ( # --> flag )          TRUE if # <> 0

       #<      ( # #' --> flag )       TRUE if # < #'

       #>      ( # #' --> flag )       TRUE if # > #'

       2DUP#<  ( # #' --> # #' flag ) TRUE if # < #'

       2DUP#=  ( # #' --> # #' flag ) TRUE if # = #'

       DUP#0=  ( # --> # flag )        TRUE if # = #0

       DUP#1=  ( # --> # flag )        TRUE if # = #1

       DUP#0<> ( # --> # flag )        TRUE if # <> #0

       DUP#1=  ( # --> # flag )        TRUE if # = #1

       DUP#<7  ( # --> # flag )        TRUE if # < #7

       DUP%0=  ( % --> % flag )        TRUE if % = %0

       ONE#>   ( # --> flag )          TRUE if # > #1

       ONE_EQ  ( # --> flag )          TRUE if # is ONE

       OVER#>  ( # #' --> # flag )     TRUE if # > #'

       OVER#0= ( # ob --> # ob flag )  TRUE if # is #0

       OVER#<  ( # #' --> # flag )     TRUE if # > #'

       OVER#=  ( # #' --> # flag )     TRUE if # = #'

       OVER#>  ( # #' --> # flag )     TRUE if # < #'

       17.1.3  Decimal_Number_Tests

       The following words compare real, extended real, and complex
       numbers, returning TRUE or FALSE.

       %<      ( % %' --> flag )       TRUE if % < %'

       %<=     ( % %' --> flag )       TRUE if % <= %'

       %<>     ( % %' --> flag )       TRUE if % <> %'

       %=      ( % %' --> flag )       TRUE if % = %'

       %>      ( % %' --> flag )       TRUE if % > %'

       %>=     ( % %' --> flag )       TRUE if % >= %'

       %0<     ( % --> flag )          TRUE if % < 0

                                 Page 79



       %0<>    ( % --> flag )          TRUE if % <> 0

       %0=     ( % --> flag )          TRUE if % = 0

       %0>     ( % --> flag )          TRUE if % > 0

       %0>=    ( % --> flag )          TRUE if % >= 0

       %%0<=   ( %% %%' --> flag )     TRUE if %% <= %%'

       %%0<>   ( %% --> flag )         TRUE if %% <> 0

       %%0=    ( %% --> flag )         TRUE if %% = 0

       %%0>    ( %% --> flag )         TRUE if %% > 0

       %%0>=   ( %% --> flag )         TRUE if %% >= 0

       %%>     ( %% %%' --> flag )     TRUE if %% > %%'

       %%>=    ( %% %%' --> flag )     TRUE if %% >= %%'

       %%<=    ( %% %%' --> flag )     TRUE if %% <= %%'

       C%%0=   ( C%% --> flag )        TRUE if C%% = (%%0,%%0)

       C%0=    ( C% --> flag )         TRUE if C% = (0,0)

       17.2  Words that Operate on the Runstream

       In many cases, it is desirable to interrupt the normal
       threaded order of execution, and insert additional objects
       or skip others in the runstream.  The following words are
       provided for these purposes.

       '  ( --> ob )

         This is the RPL analogue of the Lisp QUOTE and is one of
         the most fundamental control objects, allowing the
         evaluation of an object to be postponed. More precisely,
         assumes that the topmost body in the RUNSTREAM is non-
         empty, i.e.  the interpreter pointer does not point at a
         SEMI; and (1) If the next object in the runstream is an
         object, then pushes this object onto the data stack and
         moves the interpreter pointer to the next object; (2) If
         the next object is an object pointer, then pushes the
         pointee on the data stack and similarly skips to the next
         object.  As an example, evaluation of the secondaries

          :: # 3 # 4 SWAP ;      and      :: # 3 # 4 ' SWAP EVAL ;

         both produce the same result.

                                 Page 80



       'R  ( --> ob )

         If the object pointed to by the top pointer on the return
         stack (i.e.  the first element in the second body in the
         runstream) is an object, then 'R pushes this object onto
         the data stack, and advances the pointer to the next
         object in the same composite.  If the pointer points to an
         object pointer whose pointee is not SEMI, then pushes the
         pointee onto the data stack, and similarly advances the
         return stack pointer.  If the pointee is SEMI, then If the
         first element in the second body in the runstream is an
         object pointer to SEMI, then pushes a null secondary onto
         the data stack and does not advance the return stack
         pointer.  'R is useful in defining prefix operators. For
         example, assume that PREFIXSTO is defined as :: 'R STO ;
         Then the sequence PREFIXSTO FRED ANOTHEROBJECT would first
         push FRED onto the data stack and then execute STO, after
         which execution resumes at ANOTHEROBJECT.

       ticR  ( --> ob TRUE | FALSE )

         This word works similarly to 'R, except that it returns a
         flag to indicate whether the end of the top return stack
         composite has been reached.  That is, if the top return
         stack pointer points to an object pointer to SEMI, then
         ticR pops the return stack and returns only FALSE.
         Otherwise return the next object from the composite and
         TRUE, while advancing the return stack pointer to the next
         object.

       >R ( :: --> )

         Inserts the body of :: into the runstream, just below the
         top one.  (That is, pushes a pointer to the body of ::
         onto the return stack). An example of its use is

                         :: ' :: <foo> ; >R <bar> ;

         which will, when executed, cause <bar> to be executed
         before <foo>.

       R>  ( --> :: )

         Creates a program object from the composite body pointed
         to by the top return stack pointer, and pushes the program
         on the data stack and pops the return stack.  Example:

                       :: :: R> EVAL <foo> ; <bar> ;

         which, when executed, will cause <bar> to be executed
         before <foo>.

       R@ ( --> :: )

           Same as R> except that the return stack is not popped.

                                 Page 81



       RDROP  ( --> )

         Pops the return stack.

       IDUP  ( --> )

         Duplicates the top body in the runstream. (That is, pushes
         the RPL variable I onto the return stack).

       COLA  ( --> )

         Assuming that the interpreter pointer is pointing at an
         object other than SEMI, COLA drops the remainder of the
         program body past the object and executes the object.
         This provides for efficient tail recursion; the efficiency
         is gained in that COLA can be used to avoid excessive
         buildup of pending returns. An example of its use is in a
         definition of factorial:

                 fact:         :: { LAM x } BIND # 1 factpair ABND
                               ;

                 factpair:     :: LAM x #0= ?SEMI
                                  LAM x #* LAM x #1- ' LAM x
                                  STO COLA factpair
                               ;

         In this example, the importance of COLA is in its
         occurrence before factpair in the definition of factpair.
         Without this use, computing n!  would require n return
         stack levels, which, when the computation was completed,
         would merely be popped off (since their bodies would be
         empty).  With the inclusion of COLA, the definition uses a
         fixed maximum number of levels, independent of the
         argument to the function.

       ?SEMI   ( flag --> )

         Exits the current program if flag is TRUE.

       ?SEMIDROP  ( ob TRUE --> )  or  ( FALSE --> )

         Drops ob if flag is TRUE; exits the current program if
       flag is FALSE.

       ?SKIP  ( flag --> )

         If flag is TRUE,  skips the next object following ?SKIP.

       NOT?SEMI  ( flag --> )

         Exits the current program if flag is FALSE.

                                 Page 82



       17.3  If/Then/Else

       The fundamental RPL if/then/else capability is provided by
       means of the words RPIT and RPITE:

       RPITE   ( flag ob1 ob2 --> ? )

         If flag is TRUE then drop flag and ob2 and EVALuate ob1,
         else drop flag and ob1 and EVALuate ob2. The RPL
         expression

                           ' <foo> ' <bar> RPITE

         is equivalent to the FORTH expression

                          IF <foo> ELSE <bar> THEN

       RPIT    ( flag ob --> ? )

         If flag is TRUE then drop flag and EVALuate ob, else just
         drop flag and ob.  The RPL expression

                                ' <foo> RPIT

         is equivalent to the FORTH expression

                               IF <foo> THEN

       However, prefix versions of these words are also available,
       and are more commonly used than the postfix forms:

       IT      ( flag -->  )

         If flag is TRUE then execute the next object in the
         runstream; otherwise skip that object.  For example,

                        DUPTYPEREAL? IT :: %0 %>C% ;

         converts a real number to a complex number; does nothing
         if the argument is not a real number.

       ITE     ( flag -->  )

         If flag is TRUE the execute the next object in the
         runstream, and skip the second object; otherwise skip the
         next object and execute the second.  For example,

                       DUPTYPELIST? ITE INNERCOMP ONE

         takes a list apart, leaving the count on the stack; for
         any other type of argument, push a binary integer #1 on
         the stack.

                                 Page 83



       The converse of IT is

       ?SKIP ( flag --> )

         If flag is TRUE, skip the next object in the runstream;
         otherwise, execute it.

       There is also an unconditional skip:

       SKIP ( --> )

         Skips over the next object in the runstream and continues
         execution beyond it. The sequence SKIP ; is a NOP.

       Combination Words:

              Word            Stack          Equivalent

            #0=ITE      ( # --> )            #0= ITE
            #<ITE       ( # --> )            #0< ITE
            #=ITE       ( # --> )            #= ITE
            #>ITE       ( # --> )            #> ITE
            ANDITE      ( flag flag' --> )   AND ITE
            DUP#0=ITE   ( # --> # )          DUP #0= ITE
            EQIT        ( ob1 ob2 --> )      EQ IT
            EQITE       ( ob ob' --> )       EQ ITE
            DUP#0=IT    ( # --> # )          DUP #0= IT
            SysITE                           ( # --> )
            UserITE                          ( # --> )

       17.4  CASE words

       The word case is a combination of ITE, COLA and SKIP.  That
       is, case takes a flag from the stack; if TRUE, case executes
       the object that follows it in the runstream while popping
       the return stack to the interpreter pointer, discarding the
       rest of the program that follows the object (like COLA).  If
       FALSE, case skips the next object and continues with the
       program (like SKIP). For example, the following program
       executes different objects according to the value of a
       binary integer on the stack:

            :: DUP #0= case ZEROCASE
               DUP ONE #= case ONECASE
               DUP TWO #= case TWOCASE
               ...
            ;

                                 Page 84



       There are several words that contain case as part of their
       definitions.  The above example can be written more
       compactly using OVER#=case:

            :: ZERO OVER#=case ZEROCASE
               ONE OVER#=case ONECASE
               TWO OVER#=case TWOCASE
               ...
            ;

       The actions of the words listed below are generally
       sufficiently clear from their names.  The names have (up to)
       three parts: an initial part, then "case", then a final
       part.  The initial part indicates what is done before the
       case action, i.e. "xxxcase..." is equivalent to "xxx
       case...".  Words that have a final part after "case" are of
       two types.  For one type, the final part indicates the
       conditionally executed object itself, i.e. "...caseyyy" is
       equivalent to "...case yyy."  In the other type, the final
       part is a word or words that are incorporated into the
       following object. caseDROP and casedrop are of the first
       type and second type, respectively.  caseDROP is equivalent
       to case DROP; casedrop is like case with a DROP incorporated
       into the next object.  That is,

       Words that COLA or SKIP the next object:

         #=casedrop    ( # # --> )
                       ( # #' --> # )
               Should be named OVER#=casedrop.

         %1=case       ( % --> )

         %0=case       ( % --> flag )

         ANDNOTcase    ( flag1 flag2 --> )

         ANDcase       ( flag1 flag2 --> )

         case2drop     ( ob1 ob2 TRUE --> )
                       ( FALSE --> )

         casedrop      ( ob TRUE --> )
                       ( FALSE --> )

         DUP#0=case    ( # --> # )

         DUP#0=csedrp  ( # --> # ) # <> #0
                       ( # -->   ) # = #0

         EQUALNOTcase  ( ob ob' --> )

         EQUALcase     ( ob ob' --> )

                                 Page 85



         EQUALcasedrp  ( ob ob' ob' --> )
                       ( ob ob' ob'' --> ob )

         EQcase        ( ob1 ob2 --> )

         NOTcase       ( flag --> )

         NOTcasedrop   ( ob FALSE --> )
                       ( TRUE --> )

         ORcase        ( flag1 flag2 --> )

         OVER#=case    ( # #' --> # )

       Case words that either exit or continue with the next object:

         caseDoBadKey  ( flag --> ) Exit via DoBadKey

         caseDrpBadKey ( ob TRUE --> ) Exit via DoBadKey
                       ( FALSE --> )

         case2DROP     ( ob1 ob2 TRUE --> )
                       ( FALSE --> )

         caseDROP      ( ob TRUE --> )
                       ( FALSE --> )

         caseFALSE     ( TRUE --> FALSE )
                       ( FALSE --> )

         caseTRUE      ( TRUE --> TRUE )
                       ( FALSE --> )

         casedrpfls    ( ob TRUE --> FALSE )
                       ( FALSE --> )

         case2drpfls   ( ob1 ob2 TRUE --> FALSE )
                       ( FALSE --> )

         casedrptru    ( ob TRUE --> TRUE )
                       ( FALSE --> )

         DUP#0=csDROP  ( #0 -->  )
                       ( #  --> # ) # <> 0.
         NOTcaseTRUE   ( FALSE --> TRUE )
                       ( TRUE --> )

                                 Page 86



       18.  Stack Operations

       The words listed in this chapter perform single or multiple
       stack operations.

       2DROP           ( ob1 ob2 --> )
       2DROP00         ( ob1 ob2 --> #0 #0 )
       2DROPFALSE      ( ob1 ob2 --> FALSE )
       2DUP            ( ob1 ob2 --> ob1 ob2 ob1 ob2 )
       2DUP5ROLL       ( ob1 ob2 ob3 --> ob2 ob3 ob2 ob3 ob1 )
       2DUPSWAP        ( ob1 ob2 --> ob1 ob2 ob2 ob1 )
       2OVER           ( ob1 ob2 ob3 ob4 --> ob1 ob2 ob3 ob4 ob1 ob2 )
       2SWAP           ( ob1 ob2 ob3 ob4 --> ob3 ob4 ob1 ob2 )
       3DROP           ( ob1 ob2 ob3 --> )
       3PICK           ( ob1 ob2 ob3 --> ob1 ob2 ob3 ob1 )
       3PICK3PICK      ( ob1 ob2 ob3 --> ob1 ob2 ob3 ob1 ob2 )
       3PICKOVER       ( ob1 ob2 ob3 --> ob1 ob2 ob3 ob1 ob3 )
       3PICKSWAP       ( ob1 ob2 ob3 --> ob1 ob2 ob1 ob3 )
       3UNROLL         ( ob1 ob2 ob3 --> ob3 ob1 ob2 )
       4DROP           ( ob1 ob2 ob3 ob4 --> )
       4PICK           ( ob1 ob2 ob3 ob4 --> ob1 ... ob4 ob1 )
       4PICKOVER       ( ob1 ob2 ob3 ob4 --> ob1 ob2 ob3 ob4 ob1 ob4 )
       4PICKSWAP       ( ob1 ob2 ob3 ob4 --> ob1 ob2 ob3 ob1 ob4 )
       4ROLL           ( ob1 ob2 ob3 ob4 --> ob2 ob3 ob4 ob1 )
       4UNROLL         ( ob1 ob2 ob3 ob4 --> ob4 ob1 ob2 ob3 )
       4UNROLL3DROP    ( ob1 ob2 ob3 ob4 --> ob4 )
       4UNROLLDUP      ( ob1 ob2 ob3 ob4 --> ob4 ob1 ob2 ob3 ob3 )
       4UNROLLROT      ( ob1 ob2 ob3 ob4 --> ob4 ob3 ob2 ob1 )
       5DROP           ( ob1 ... ob5 --> )
       5PICK           ( ob1 ... ob5 --> ob1 ... ob5 ob1 )
       5ROLL           ( ob1 ... ob5 --> ob2 ... ob5 ob1 )
       5ROLLDROP       ( ob1 ... ob5 --> ob2 ... ob5 )
       5UNROLL         ( ob1 ... ob5 --> ob5 ob1 ... ob4 )
       6DROP           ( ob1 ... ob6 --> )
       6PICK           ( ob1 ... ob6 --> ob1 ... ob6 ob1 )
       6ROLL           ( ob1 ... ob6 --> ob2 ... ob6 ob1 )
       7DROP           ( ob1 ... ob7 --> )
       7PICK           ( ob1 ... ob7 --> ob1 ... ob7 ob1 )
       7ROLL           ( ob1 ... ob7 --> ob2 ... ob7 ob1 )
       8PICK           ( ob1 ... ob8 --> ob1 ... ob8 ob1 )
       8ROLL           ( ob1 ... ob8 --> ob2 ... ob8 ob1 )
       8UNROLL         ( ob1 ... ob8 --> ob8 ob1 ... ob7 )
       DEPTH           ( ob1 ... obn ... --> #n )
       DROP            ( ob --> )
       DROPDUP         ( ob1 ob2 --> ob1 ob1 )
       DROPFALSE       ( ob --> FALSE )
       DROPNDROP       ( ... # ob ) Drops ob, then # objects
       DROPONE         ( ob --> #1 )
       DROPOVER        ( ob1 ob2 ob3 --> ob1 ob2 ob1 )
       DROPRDROP       ( ob --> ) Drops ob, and pops 1 return stk level
       DROPROT         ( ob1 ob2 ob3 ob4 --> ob2 ob3 ob1 )
       DROPSWAP        ( ob1 ob2 ob3 --> ob2 ob1 )
       DROPSWAPDROP    ( ob1 ob2 ob3 --> ob2 )
       DROPTRUE        ( ob --> TRUE )
       DROPZERO        ( ob --> #0 )
       DUP             ( ob --> ob ob )
       DUP#1+PICK      ( ... #n --> ... #n obn )
       DUP3PICK        ( ob1 ob2 --> ob1 ob2 ob2 ob1 )

                                 Page 87



       DUP4UNROLL      ( ob1 ob2 ob3 --> ob3 ob1 ob2 ob3 )
       DUPDUP          ( ob --> ob ob ob )
       DUPONE          ( ob --> ob ob #1 )
       DUPPICK         ( ... #n --> ... #n obn-1 )
       DUPROLL         ( ... #n --> ... #n obn-1 )
       DUPROT          ( ob1 ob2 --> ob2 ob2 ob1 )
       DUPTWO          ( ob --> ob ob #2 )
       DUPUNROT        ( ob1 ob2 --> ob2 ob1 ob2 )
       DUPZERO         ( ob --> ob ob #2 )
       N+1DROP         ( ob ob1 ... obn #n --> )
       NDROP           ( ob1 ... obn #n --> )
       NDUP            ( ob1 ... obn #n --> ob1 ... obn ob1 ... obn )
       NDUPN           ( ob #n --> ob ... ob #n )
       ONEFALSE        ( --> #1 FALSE )
       ONESWAP         ( ob --> #1 ob )
       OVER            ( ob1 ob2 --> ob1 ob2 ob1 )
       OVER5PICK       ( v w x y z --> v w x y z y v )
       OVERDUP         ( ob1 ob2 --> ob1 ob2 ob1 ob1 )
       OVERSWAP        ( ob1 ob2 --> ob2 ob1 ob1 )
       OVERUNROT       ( ob1 ob2 --> ob1 ob1 ob2 )
       PICK            ( obn ... #n --> ... obn )
       ROLL            ( obn ... #n --> ... obn )
       ROLLDROP        ( obn ... #n --> ... )
       ROLLSWAP        ( obn ... ob #n --> ... obn ob )
       ROT             ( ob1 ob2 ob3 --> ob2 ob3 ob1 )
       ROT2DROP        ( ob1 ob2 ob3 --> ob2 )
       ROT2DUP         ( ob1 ob2 ob3 --> ob2 ob3 ob1 ob3 ob1 )
       ROTDROP         ( ob1 ob2 ob3 --> ob2 ob3 )
       ROTDROPSWAP     ( ob1 ob2 ob3 --> ob3 ob2 )
       ROTDUP          ( ob1 ob2 ob3 --> ob2 ob3 ob1 ob1 )
       ROTOVER         ( ob1 ob2 ob3 --> ob2 ob3 ob1 ob3 )
       ROTROT2DROP     ( ob1 ob2 ob3 --> ob3 )
       ROTSWAP         ( ob1 ob2 ob3 --> ob2 ob1 ob3 )
       SWAP            ( ob1 ob2 --> ob2 ob1 )
       SWAP2DUP        ( ob1 ob2 --> ob2 ob1 ob2 ob1 )
       SWAP3PICK       ( ob1 ob2 ob3 --> ob1 ob3 ob2 ob1 )
       SWAP4PICK       ( ob1 ob2 ob3 ob4 --> ob1 ob2 ob4 ob3 ob4 )
       SWAPDROP        ( ob1 ob2 --> ob2 )
       SWAPDROPDUP     ( ob1 ob2 --> ob2 ob2 )
       SWAPDROPSWAP    ( ob1 ob2 ob3 --> ob3 ob1 )
       SWAPDROPTRUE    ( ob1 ob2 --> ob2 TRUE )
       SWAPDUP         ( ob1 ob2 --> ob2 ob1 ob1 )
       SWAPONE         ( ob1 ob2 --> ob2 ob1 #1 )
       SWAPOVER        ( ob1 ob2 --> ob2 ob1 ob2 )
       SWAPROT         ( ob1 ob2 ob3 --> ob3 ob2 ob1 )
       SWAPTRUE        ( ob1 ob2 --> ob2 ob1 TRUE )
       UNROLL          ( ... ob #n --> ob ... )
       UNROT           ( ob1 ob2 ob3 --> ob3 ob1 ob2 )
       UNROT2DROP      ( ob1 ob2 ob3 --> ob3 )
       UNROTDROP       ( ob1 ob2 ob3 --> ob3 ob1 )
       UNROTDUP        ( ob1 ob2 ob3 --> ob3 ob1 ob2 ob2 )
       UNROTOVER       ( ob1 ob2 ob3 --> ob3 ob1 ob2 ob1 )
       UNROTSWAP       ( ob1 ob2 ob3 --> ob3 ob2 ob1 )
       ZEROOVER        ( ob --> ob #0 ob )
       reversym        ( ob1 ... obn #n --> obn ... ob1 #n )

                                 Page 88



       19.  Memory Operations

       The words presented in this chapter manipulate directories,
       variables, and system ram.

       19.1  Temporary Memory

       The user word NEWOB creates a new copy of an object in
       temporary memory.  There are a few internal variations on
       this theme:

       CKREF           ( ob --> ob' )
                         If ob is in TEMPOB, is not embedded
                         in a composite object, and is not
                         referenced, then does nothing. Otherwise
                         copies ob to TEMPOB and returns the copy.

       INTEMNOTREF?    ( ob --> ob flag )
                         If the input object is in TEMPOB area,
                         is not embedded in a composite object,
                         and is not referenced, returns ob and
                         TRUE, otherwise returns ob and FALSE.

       TOTEMPOB        ( ob --> ob' )
                         Copies ob into TEMPOB and returns pointer
                         to the new ob.

       19.2  Variables and Directories

       The system RPL basis of user STO and RCL is the words STO,
       CREATE, and @:

       CREATE ( ob id --> )
         Creates a RAM-WORD with ob as its object part and the NAME
         FORM from id as its name part, in the current directory.
         An error occurs if ob is or contains the current directory
         ("Directory Recursion"). Assumes that ob is not a
         primitive code object.

       STO ( ob id --> )
           ( ob lam --> )
         In the lam case, the temporary identifier lam is re-bound
         to ob.  The binding is to the first such temporary
         identifier object matching lam in the Temporary
         Environment area (searching from the first temporary
         environment to the last). An error is returned if lam is
         unbound.  In the id case, STO attempts to match id to the
         name part of a global variable.  If resolution is
         unsuccessful, STO creates a variable with ob as its object
         part and the name form from id as its name part, in the
         current directory. If resolution is successful, then ob
         replaces the object part of the resolved variable. If any
         updatable system object pointers reference the object part
         of the resolved variable, then the object part is placed
         into the temporary object area prior to the replacement
         and all affected updatable system object pointers are

                                 Page 89



         adjusted to reference the copy of the object part in the
         temporary object area.  For the id case, STO assumes that
         ob is not a primitive code object.

       @   ( id --> ob TRUE )
           ( id --> FALSE )
           ( lam --> ob TRUE )
           ( lam --> FALSE )
         In the lam case, @ attempts to match lam to the temporary
         identifier object part of a binding in the Temporary
         Environment area (searching from the first temporary
         environment to the last). If successful, then the object
         bound to lam is returned along with a TRUE flag; else, a
         FALSE flag is returned.  In the id case, @ attempts to
         match id to the name part of a global variable, starting
         in the current directory, and working up through parent
         directories if necessary.  If the resolution is
         unsuccessful, then a FALSE flag is returned. Otherwise,
         the object part of the resolved variable is returned with
         a TRUE flag.

       One difficulty in using STO and @ is that they make no
       distinctions for built-in commands; with SIN as its (object)
       argument, STO will blithely copy the entire body of SIN into
       a variable.  @ then would recall that undecompilable
       program.  For this reason, it is better to use SAFESTO and
       SAFE@, which work like STO and @ except that they
       automatically convert ROM bodies into XLIB names (SAFESTO)
       and back again (SAFE@).

       Additional extensions are:

       ?STO_HERE ( ob id --> )
                 ( ob lam --> )
         This is the system version of user STO.  It is the same as
         SAFESTO, except that for global variables, it a) stores
         only in the current directory; and b) will not overwrite a
         stored directory.

       SAFE@_HERE ( id --> ob TRUE )
                  ( id --> FALSE )
                  ( lam --> ob TRUE )
                  ( lam --> FALSE )
       Same as SAFE@, except for global variables the search is restricted to the
       current directory.

         Other related words:

         PURGE   ( id --> ) Purges variable specified by id; does
         no type check on
                            stored object.

         XEQRCL  ( id  --> ob ) Same as SAFE@ for global variables,
         but errors
                            if variable is nonexistent

                                 Page 90



         XEQSTOID ( ob id --> ) Alternate name for ?STO_HERE

       19.2.1  Directories  A directory (abbreviated "rrp" from its
       original name "ramrompair") is an object whose body contains
       a linked-list of global variables--named objects referenced
       by global names.  The body also contains a library ID number
       that associates ("attaches") a library object with the
       directory so that the library's commands follow the
       directory's variables in the name compilation search order.

       A directory may be "rooted", i.e. stored in a global
       variable (which may be within another directory body), in
       which case its variable's names are available for
       compilation.  The particular directory in which a name
       resolution search begins is called the "current directory,"
       or the "context directory;" this directory is specified by
       the contents of a system RAM location.  An unrooted
       directory (in tempob or in a port, for example), should
       never be selected as the context directory.  Nor can there
       be any references within a directory in tempob; a directory
       is not a composite object, so garbage collection cannot work
       properly if such references exist.  For this reason, an
       internally referenced directory should not be removed by
       PURGE--use XEQPGDIR instead.

       In addition to the context, another system RAM location
       identifies the "stopsign" directory, which is acts as the
       ending point for a name resolution search much as the
       context directory is the starting point.  By using the
       stopsign, you can restrict name resolution searches to a
       specific range; however, you should use error traps to
       insure that the stopsign is reset to the home directory when
       an error occurs.

       The home directory (aka "sysramrompair") is the default for
       both context and stopsign.  This is not a normal directory,
       in that it is never unrooted, and contains additional
       structure that ordinary directories don't have (such as
       multiple library attachments and alternate message and
       command hash tables).

       A directory is a data-class object so that execution of a
       directory merely returns it to the stack.  However, global
       name execution has the property that executing the name of a
       rooted (stored) directory makes that directory the current
       directory rather than executing the directory itself.

       The following words are available for directory
       manipulation:
       CONTEXT! ( rrp --> )
         Stores a pointer to a rooted directory as the current directory

       CONTEXT@ ( --> rrp )
         Recalls the current context directory.

       CREATEDIR       ( id --> )
         Creates a directory object in the current directory.

                                 Page 91



       DOVARS  ( --> { id1 id2 ... } )
         Returns list of variable names from the current directory.

       HOMEDIR ( --> )
         Makes HOME the current directory.

       PATHDIR ( --> { HOME dir dir ... } )
         Returns the current path.

       UPDIR   ( --> )
         Switches context to the parent of the current directory.

       XEQORDER ( { id1 id2 ... } --> )
         ORDERs current directory.

       XEQPGDIR ( id --> )
         Purges a directory while respecting reference/garbage collection
conventions.

       19.3  The Hidden Directory

       There is a hidden, nullnamed directory at the beginning of
       the home directory, that contains the user key definitions
       and alarm information.  Application programs may use this
       directory as well.  However, remember that the user has no
       way to detect or remove variables from this directory, so an
       application should either remove such variables before
       finishing, or to provide a command that lets the user remove
       specific variables from the hidden directory.

       These words provide store, recall and purge capabilities for
       the hidden directory:

       PuHiddenVar  ( id --> )  Purges the hidden variable named id.

       RclHiddenVar ( id --> ob TRUE )
                    ( id --> FALSE   )
         Recalls (@) a hidden variable.

       StoHiddenVar    ( ob id --> )
         Stores ob in hidden variable

                                 Page 92



       19.4  Additional Memory Utilities

       GARBAGE  ( --> )
         Forces garbage collection.

       MEM( --> # )
         Returns the amount of free memory (a garbage collection is not forced)

       OCRC ( ob --> #nibbles checksum(hxs)  Returns size of object in nibbles and
         a hex string checksum

       getnibs ( hxsDATA hxsADDR --> hxsDATA' ) Internal RPL version of PEEK

       putnibs ( hxsDATA hxsADDR --> ) Internal RPL version of POKE

                                 Page 93



       20.  Display Management & Graphics

       Most user RPL graphics commands are directed to the graphics
       screen, which is the graphics object visible in the plot
       environment. However, the "text screen," the grob visible in
       the standard stack environment, has the same properties as
       the graph screen, and should be used by application programs
       for graphics displays whenever possible, to leave the graph
       screen as a user "owned" resource. The EquationWriter does
       this, for example, as does the HP82211A HP Solve Equation
       Library card.

       20.1  Display Organization

       HP 48 system RAM contains three dedicated graphics objects
       used for display purposes:

          Pointer           Grob        Location
         ---------    ----------------  ---------

                      +--------------+
         HARDBUFF2 -> | Menu labels  |  (Low Mem)
                      +--------------+
         ABUFF     -> | text  grob   |
                      +--------------+
         GBUFF     -> | graph grob   |  (Hi  Mem)
                      +--------------+

       The text grob and graph grob may be enlarged, and may be
       scrolled.

       The word TOADISP switches makes the text grob visible;
       TOGDISP switches the LCD to the graph grob.

       The following words are useful for returning display grobs
       to the stack:

       ABUFF  ( --> textgrob )
       GBUFF  ( --> graphgrob )
       HARDBUFF  ( --> HBgrob )
         Returns whichever of the text or graph grob is currently displayed.
       HARDBUFF2 ( --> menugrob )
       HBUFF_X_Y( --> HBgrob #x1 #y1 )

       A ram pointer named VDISP indicates which grob is currently
       shown in the display.  VDISP may point to either the text
       grob or the graph grob.  VDISP is not directly accessible -
       the word HARDBUFF returns the current display grob to the
       stack (see below).  Remember that ABUFF and GBUFF just
       return pointers, so if the grob is being recalled for
       modification and later return to the user, TOTEMPOB should
       be used to create a unique copy in temporary memory.

                                 Page 94



       From a user's point of view, the text display is organized
       into three regions, and the internal numbering convention
       for these areas is reflected in many of the display control
       words (see "Display Area Control" below).  The display areas
       are numbered 1, 2, and 3.  The letters "DA", for "Display
       Area", are found in the names of some display control words.

                 +-------------------+
            DA1  | directory    time | Status line (16 lines)
                 +-------------------+
                 |4:                 |
            DA2a |3:                 | Stack
                 +-------------------+ Display
            DA2b |2:                 | (40 lines total)
                 |1:                 |
                 +-------------------+
            DA3  | 1  2  3   4  5  6 | Menu labels (8 lines)
                 +-------------------+

       Display area 2 is actually divided into areas 2a and 2b, a
       distinction most often used by the command line line.  The
       boundary between 2a and 2b can move, but the overall sizes
       of areas 1, 2, and 3 are fixed.

       20.2  Preparing the Display

       Two words establish control over the text display.  These
       words are RECLAIMDISP and ClrDA1IsStat.

       The word RECLAIMDISP performs the following actions:

          + Makes sure the text grob is the current display.

          + Clears the text display.

          + Resizes the text grob to the standard size (131 wide by
            56 high) if necessary.

       RECLAIMDISP is very much like the user word CLLCD, except
       that CLLCD does not resize the text grob.

       The word ClrDA1IsStat suspends the ticking clock display,
       and is optional. If user input will be requested using words
       like WaitForKey or a parameterized outer loop (see "Keyboard
       Input"), then the clock updates will continue, and may botch
       the display.

       An example usage of ClrDA1IsStat can be found in the
       Periodic Table application, where a user can enter a
       molecular formula.  The word WaitForKey is used to get
       keystrokes, and ClrDA1IsStat prevents the clock from
       overwriting the Periodic Table grid display.

       If the menu display is not needed, the word TURNMENUOFF will
       remove DA3 from the display and enlarge the text grob to be

                                 Page 95



       131x64. The corresponding word TURNMENUON restores the menu
       display.

       A simplified framework for an application secondary which
       can be invoked by an end user and uses the text display
       looks like this:

       ::
         ClrDA1IsStat          ( *Suspend clock display updates* )
         RECLAIMDISP           ( *Assert & clear alpha display* )
         TURNMENUOFF           ( *Remove menu keys* )

         < application >

         ClrDAsOK   -\         ( *Tell the 48 to redraw the lcd* )
           -or-       > Choose one
         SetDAsTemp -/         ( *Freeze all display areas* )
       ;

       20.3  Controlling Display Refresh

       When an application terminates or returns to the system
       outer loop for keyboard input, several internal versions of
       the user word FREEZE are available to control the display,
       and there is a word that ensures that certain display or all
       display areas will be redrawn:

       SetDA1Temp      Freeze display area 1
       SetDA2aTemp     Freeze display area 2a
       SetDA2bTemp     Freeze display area 2b
       SetDA3Temp      Freeze display area 3
       SetDAsTemp      Freeze all display areas
       ClrDAsOK        Redraw the entire lcd when program ends

       There are still more variations on this theme - see the
       chapter "Keyboard Input" for more.

                                 Page 96



       20.4  Clearing the Display

       The following words may be used to clear either the whole
       display or a portion of HARDBUFF. Remember that HARDBUFF
       refers to the currently displayed grob, which is either the
       text grob or the graph grob.

       BLANKIT         ( #startrow #rows --> )
                         Clears #rows starting at #startrow
       BlankDA12       ( --> )
                         Clears rows 0 through 56
       BlankDA2        ( --> )
                         Clears rows 16 through 56
       CLEARVDISP      ( --> )
                         Zeros out all of HARDBUFF
       Clr16           ( --> )
                         Clears top 16 pixel rows
       Clr8            ( --> )
                         Clears top 8 pixel rows
       Clr8-15         ( --> )
                         Clears pixel rows 8-15

       20.5  Annunciator Control

       The following words control the left-shift, right-shift, and
       alpha annunciators.  It is unlikely that an application
       should have to control these directly, and misuse of these
       words can lead to misleading displays after an application
       terminates.

       ClrAlphaAnn     Clears the alpha annunciator
       ClrLeftAnn      Clears the left-shift annunciator
       ClrRightAnn     Clears the right-shift annunciator
       SetAlphaAnn     Sets the alpha annunciator
       SetLeftAnn      Sets the left-shift annunciator
       SetRightAnn     Sets the right-shift annunciator

                                 Page 97



       20.6  Display Coordinates

       The upper-left pixel of the display has the coordinates x=0
       y=0, which are the same as user pixel coordinates { #0 #0 }.
       The lower-right pixel coordinate is x=130 y=63.

       NOTE: subgrobs are taken from the upper-left coordinate to
       the pixel below and to the right of the lower right corner.
       The terms #x1 and #y1 refer to the upperleft pixel of a sub
       area, while #x2 and #y2 refer to the pixel below and the
       right of the lower right corner.

        { #0 #0 } +------------------------------+
        {#x1 #y1} |*                             |
                  |                              |
                  |       GOR +----+             |
                  | coordinate|*   |             |
                  |           |    |             |
                  |           +----+             |
                  |                 * Subgrob    |
                  |                   coordinate |
                  |                              |
                  |                             *|  <- { #130 #63 }
                  +------------------------------+
                                                  * <- { #x2  #y2 }

       20.6.1  Window_Coordinates

       The following routines return HARDBUFF and coordinates for
       portions of the display in a form suitable for a subsequent
       call to SUBGROB. The terms #x1 and #y1 refer to the upper
       left corner of the window on the currently displayed grob.
       If the grob has been scrolled, these will NOT be #0 #0!

       If HARDBUFF has been scrolled, some display words may not be
       appropriate to use since they depend on the upper left
       corner of the display being #0 #0.  The LCD is then called
       the "window", and the terms #x1 and #y1 will refer to the
       pixel coordinates of the upper left corner of the window.
       The word HBUFF_X_Y returns HARDBUFF and these window
       coordinates.  The word WINDOWCORNER returns just the window
       coordinates.  The words DISPROW1* and DISPROW2* mentioned
       below work relative to the window corner.

       Rows8-15        ( --> HBgrob #x1 #y1+8 #x1+131 #y1+16 )
       TOP16           ( --> HBgrob #x1 #y1 #x1+131 #y1+16 )
       TOP8            ( --> HBgrob #x1 #y1 #x1+131 #y1+8 )
       WINDOWCORNER    ( --> #x #y )
                         Returns pixel numbers of upperleft corner
                         of the window

                                 Page 98



       The word Save16 calls TOP16 and SUBGROB to produce a grob
       consisting of the top 16 rows of the current display:

       Save16          ( --> grob )

       Equivalent words that save the top eight rows or rows 8-15
       are not in the HP 48, but can be written as follows:

       :: TOP8 SUBGROB ; ( --> grob ) ( *Saves the top 8 rows* )
       :: TOP8-15 SUBGROB ; ( --> grob ) ( *Saves the top 8-15 rows* )

       20.7  Displaying Text

       There are three fonts available in the HP 48, distinguished
       by size.  The smallest font is variable width; the medium
       and large fonts are fixed width.

       The words described below display text using the medium and
       large fonts in specific areas.  Use of the small fonts, and
       other placement options for the medium and large fonts must
       be done in graphics, which is described later.

       20.7.1  Standard_Text_Display_Areas

       When the text grob is the current display AND has not been
       scrolled, the following words may be used to display text in
       the medium (5x7) font.  Long strings are truncated to 22
       characters with a trailing ellipsis (...), and strings
       shorter than 22 characters are blank filled.

       DISPROW1        ( $ --> )
       DISPROW2        ( $ --> )
       DISPROW3        ( $ --> )
       DISPROW4        ( $ --> )
       DISPROW5        ( $ --> )
       DISPROW6        ( $ --> )
       DISPROW7        ( $ --> )
       DISPN           ( $ #row --> )
       DISP5x7         ( $ #start #max )

                               (0,0)                (130,0)
          DISPROW1 writes into   +--------------------+
                                 |                    |
                                 +--------------------+
                               (0,7)                 (130,7)

                               (0,8)                 (130,8)
          DISPROW2 writes into   +--------------------+
                                 |                    |
                                 +--------------------+
                               (0,15)                (130,15)
                (etc.)

                                 Page 99



       The word DISP5x7 may be used to display a string that spans
       more than one line of the display. The string must have
       embedded carriage returns to show where to break to the next
       display line.  If a line segment is greater than 22
       characters, it will be truncated and displayed with a
       trailing ellipsis (...).  The string is displayed starting
       at row #start for #max rows.

       The following words may be used to display text in the large
       (5x9) font.  Long strings are truncated to 22 characters
       with a trailing ellipsis (...), and strings shorter than 22
       characters are blank filled.

       BIGDISPROW1     ( $ --> )
       BIGDISPROW2     ( $ --> )
       BIGDISPROW3     ( $ --> )
       BIGDISPROW4     ( $ --> )
       BIGDISPN        ( $ #row --> )

                               (0,17)              (130,0)
       BIGDISPROW1 writes into   +--------------------+
                                 |                    |
                                 +--------------------+
                               (0,26)              (130,26)

                               (0,27)              (130,27)
       BIGDISPROW2 writes into   +--------------------+
                                 |                    |
                                 +--------------------+
                               (0,36)              (130,36)
                (etc.)

                                 Page 100



       20.7.2  Temporary_Messages

       Sometimes it is convenient to display a warning, then return
       the display to its previous state.  There are several
       techniques and tools available for this.  The easiest way to
       do this is with the word FlashWarning. The code for
       FlashWarning looks like this:

       FlashWarning            ( $ --> )
       ::
         ERRBEEP               ( *Generate an error beep* )
         Save16                ( *Save the top 16 pixel rows* )
         SWAP DISPSTATUS2      ( *Display the warning* )
         VERYVERYSLOW          ( *Wait about 3 seconds* )
         Restore16             ( *Restore the top 16 rows* )
       ;

       Variations on FlashWarning can be constructed using words
       like TOP16 or a version suggested above that saves fewer
       rows.  The example below saves the top 8 rows and displays a
       one line message for about .6 second:

       ::
         TOP8 SUBGROB          ( *Save the top 8 rows* )
         SWAP DISPROW1*        ( *Display the message* )
         VERYSLOW VERYSLOW     ( *Short delay* )
         Restore8              ( *Restore the top 8 rows* )
       ;

       NOTE: It is important to use DISPROW1* and DISPROW2* instead
       of DISPROW1 and DISPROW2 if there is any chance that
       HARDBUFF has been scrolled.  There are no corresponding
       words for other display lines.

                                 Page 101



       20.8  Graphics Objects

       The following section presents tools for creating,
       manipulating, and displaying graphics objects.

       20.8.1  Warnings

       Here are two warnings:

         1.  The term "bang-type operation" refers to an operation
             performed directly upon an object without making a
             copy.  The naming convention for words which perform
             this kind of operation often have an exclamation point
             to denote a "bang" operation, such as GROB! or
             GROB!ZERO.

             You must remember two things when using "bang"
             operations:

              + Since the object itself is modified, any pointers
                on the stack that refer to that object will now
                point to a changed object.  The word CKREF may be
                used to ensure that an object is unique.

              + These operations have no error checking, so
                improper or out-of-range parameters may corrupt
                memory beyond recovery.

         2.  In practice, it is best to use the word XYGROBDISP to
             place a grob into the display grob.  The word
             XYGROBDISP is conservative in nature - if the graphic
             to be placed in HARDBUFF would exceed the boundaries
             of HARDBUFF, the HARDBUFF grob is enlarged to
             accomodate the new grob.

                                 Page 102



       20.8.2  Graphics_Tools

       The following words create or modify graphics objects:
       $>BIGGROB       ( $ --> grob ) ( 5x9 font )
       $>GROB          ( $ --> grob ) ( 5x7 font )
       $>grob          ( $ --> grob ) ( 3x7 font )
       DOLCD>          ( --> 64x131grob )
       GROB!           ( grob1 grob2 #col #row --> )
                         Stores grob1 into grob2. This is a
                         bang-type word with no error checks!
       GROB!ZERO       ( grob #x1 #y1 #x2 #y2 --> grob' )
                         Zeros out a rectangular section of a
                         grob.  NOTE: Bang-type operation.
       GROB!ZERODRP    ( grob #x1 #y1 #x2 #y2 --> )
                         Zeros out a rectangular section of a
                         grob.  NOTE: Bang-type operation!
       GROB>GDISP      ( grob --> )
                         Stores graph grob with new grob.
       HARDBUFF        ( --> HBgrob (the current display grob) )
       HEIGHTENGROB    ( grob #rows --> )
                         Adds #rows to grob, unless grob is null.
                         NOTE: Assumes text grob or graph grob!
       INVGROB         ( grob --> grob' )
                         Invert grob data bits - bang-type.
       LINEOFF         ( #x1 #y1 #x2 #y2 --> )
                         Clears pixels in a line in text grob
                         Note: #x2 must be > #x1 (use ORDERXY#)
       LINEOFF3        ( #x1 #y1 #x2 #y2 --> )
                         Clears pixels in a line in graph grob
                         Note: #x2 must be > #x1 (use ORDERXY#)
       LINEON          ( #x1 #y1 #x2 #y2 --> )
                         Sets pixels in a line in text grob
                         Note: #x2 must be > #x1 (use ORDERXY#)
       LINEON3         ( #x1 #y1 #x2 #y2 --> )
                         Sets pixels in a line in graph grob
                         Note: #x2 must be > #x1 (use ORDERXY#)
       MAKEGROB        ( #height #width --> grob )
       ORDERXY#        ( #x1 #y1 #x2 #y2 --> #x1 #y1 #x2 #y2 )
                         Orders two points for line drawing
       PIXOFF          ( #x #y --> )
                         Clears a pixel in the text grob
       PIXOFF3         ( #x #y --> )
                         Clears a pixel in the graph grob
       PIXON           ( #x #y --> )
                         Sets a pixel in the text grob
       PIXON?          ( #x #y --> flag )
                         Returns TRUE if text grob pixel is set
       PIXON?3         ( #x #y --> flag )
                         Returns TRUE if graph grob pixel is set
       PIXON3          ( #x #y --> )
                         Sets a pixel in the graph grob
       SUBGROB         ( grob #x1 #y1 #x2 #y2 --> subgrob )
       Symb>HBuff      ( symb --> )
                         Displays symb in HARDBUFF in Equation-
                         Writer form.  May enlarge HARDBUFF, so
                         do RECLAIMDISP afterwards.

                                 Page 103



       TOGLINE         ( #x1 #y1 #x2 #y2 --> )
                         Toggles pixels in a line in text grob
       TOGLINE3        ( #x1 #y1 #x2 #y2 --> )
                         Toggles pixels in a line in graph grob

       NOTE: #x2 must be greater than #x1 for line drawing!

       20.8.3  Grob_Dimensions

       The following words return or verify size information:

       CKGROBFITS      ( grob1 grob2 #n #m --> grob1 grob2' #n #m )
                         Truncates grob2 if it doesn't fit in grob1
       DUPGROBDIM      ( grob --> grob #height #width )
       GBUFFGROBDIM    ( --> #height #width )
                         Returns dimensions of graph grob
       GROBDIM         ( grob --> #height #width )
       GROBDIMw        ( grob --> #width )

       20.8.4  Built-in_Grobs

       The following words refer to built-in grobs:

       BigCursor       5x9 Cursor (outline box)
       CROSSGROB       5x5 "+" symbol
       CURSOR1         5x9 Insert Cursor (arrow)
       CURSOR2         5x9 Replace Cursor (solid box)
       MARKGROB        5x5 "X" symbol
       MediumCursor    5x7 Cursor (outline box)
       SmallCursor     3x5 Cursor (outline box)

                                 Page 104



       20.8.5  Menu_Display_Utilities

       Menu labels are grobs which are 8 rows high and 21 pixels
       wide.  The columns for menu key labels in HARDBUFF2 are:

               ZERO            Softkey 1
               TWENTYTWO       Softkey 2
               # 0002C         Softkey 3
               # 00042         Softkey 4
               # 00058         Softkey 5
               # 0006E         Softkey 6

       The routine DispMenu.1 redisplays the current menu; the
       routine DispMenu redisplays the current menu and also calls
       SetDA3Valid to "freeze" the menu display line.

       The following words convert objects to menu labels and
       display the labels at the given column number:

       Grob>Menu       ( #col 8x21grob --> )
                         Displays an 8x21 (only!) grob
       Id>Menu         ( #col Id --> )
                         Recalls Id and displays standard label
                         or directory label, depending on the
                         contents of Id.
       Seco>Menu       ( #col seco --> )
                         Evaluates secondary and uses result to
                         produce and display appropriate menu label
       Str>Menu        ( #col $ --> )
                         Makes and displays standard menu label

       The following words convert strings to the different kinds
       of available menu key grobs:

       MakeBoxLabel    ( $ --> grob ) Box with bullet in it
       MakeDirLabel    ( $ --> grob ) Box with directory bar
       MakeInvLabel    ( $ --> grob ) White label (solver)
       MakeStdLabel    ( $ --> grob ) Black label (standard)

       20.9  Scrolling the Display

       The following words are available for scrolling the display:

       SCROLLDOWN      ( *Scroll down one pixel with repeat* )
       SCROLLLEFT      ( *Scroll left one pixel with repeat* )
       SCROLLRIGHT     ( *Scroll right one pixel with repeat* )
       SCROLLUP        ( *Scroll up one pixel with repeat* )

       JUMPBOT         ( *Move window to bottom edge of grob* )
       JUMPLEFT        ( *Move window to left edge of grob* )
       JUMPRIGHT       ( *Move window to right edge of grob* )
       JUMPTOP         ( *Move window to bottom edge of grob* )

       The SCROLL* words test to see if their corresponding arrow
       key is being held down, and repeat their action until the

                                 Page 105



       edge of the grob is reached or the key released.

       The example below illustrates a series of graphics
       operations and the use of a Parameterized Outer Loop which
       provides scrolling for the user.

       *---------------------------------------------------------

       *
       * Include the header file KEYDEFS.H, which defines words
       * like kcUpArrow at physical key numbers.
       *
       INCLUDE KEYDEFS.H
       *
       * Include the eight characters needed for binary download
       *
       ASSEMBLE
               NIBASC  /HPHP48-D/
       RPL
       *
       * Begin the secondary
       *
       ::
         RECLAIMDISP           ( *Claim the alpha display* )
         ClrDA1IsStat          ( *Temporarily disable clock* )
       *                       ( *Try removing ClrDA1IsStat* )
         ZEROZERO              ( #0 #0 )
         150 150 MAKEGROB      ( #0 #0 150x150grob )
         XYGROBDISP            (  )
         TURNMENUOFF           ( *Turn off menu line* )
       *
       * Draw diagonal lines.  Remember that LINEON requires
       * requires #x2>#x1!
       *
         ZEROZERO              ( #x1 #y1 )
         149 149               ( #x1 #y1 #x2 #y2 )
         LINEON                ( *Draw line* )
         ZERO 149              ( #x1 #y1 )
         149 ZERO              ( #x1 #y1 #x2 #y2 )
         LINEON                ( *Draw line* )
       *
       * Place text
       *
         HARDBUFF
         75 50 "SCROLLING"     ( HBgrob 75 150 "SCROLLING" )
         150 CENTER$3x5        ( HBgrob )
         75 100 "EXAMPLE"      ( HBgrob 75 100 "EXAMPLE" )
         150 CENTER$3x5        ( HBgrob )
         DROPFALSE             ( FALSE )
         { LAM Exit } BIND     ( *Bind POL exit flag* )
         ' NOP                 ( *No display action*  )
         ' ::                  ( *Hard key handler*   )
           kpNoShift #=casedrop
             ::
                kcUpArrow    ?CaseKeyDef
                                 :: TakeOver SCROLLUP ;

                                 Page 106



                kcLeftArrow  ?CaseKeyDef
                                 :: TakeOver SCROLLLEFT ;
                kcDownArrow  ?CaseKeyDef
                                 :: TakeOver SCROLLDOWN ;
                kcRightArrow ?CaseKeyDef
                                 :: TakeOver SCROLLRIGHT ;
                kcOn         ?CaseKeyDef
                                 :: TakeOver
                                    TRUE ' LAM Exit STO ;
                kcRightShift   #=casedrpfls
                DROP 'DoBadKeyT
             ;
           kpRightShift #=casedrop
             ::
                kcUpArrow    ?CaseKeyDef
                                 :: TakeOver JUMPTOP ;
                kcLeftArrow  ?CaseKeyDef
                                 :: TakeOver JUMPLEFT ;
                kcDownArrow  ?CaseKeyDef
                                 :: TakeOver JUMPBOT ;
                kcRightArrow ?CaseKeyDef
                                 :: TakeOver JUMPRIGHT ;
                kcRightShift #=casedrpfls
                DROP 'DoBadKeyT
             ;
           2DROP 'DoBadKeyT
         ;
         TrueTrue              ( *Key control flags* )
         NULL{}                ( *No softkeys here*  )
         ONEFALSE              ( *1st row, no suspend* )
         ' LAM Exit            ( *App exit condition* )
         ' ERRJMP              ( *Error handler* )
         ParOuterLoop          ( *Run the ParOuterLoop* )
         TURNMENUON            ( *Restore menu row* )
         RECLAIMDISP           ( *Resize and clear display* )
       ;

                                 Page 107



       The above code, if stored in a file SCROLL.S, can be
       compiled as follows:

       RPLCOMPILE SCROLL.S
       SASM SCROLL.A
       SLOAD -H SCROLL.M

       This example also assumes that the file KEYDEFS.H is either
       in the same directory or the source file has been modified
       to reflect the location of KEYDEFS.H.  The loader control
       file SCROLL.M looks like this:

       OU SCROLL
       LL SCROLL.LR
       SU XR
       SE ENTRIES.O
       RE SCROLL.O

       The final file, SCROLL, may be binary downloaded to the
       HP 48 for a test.

       When SCROLL is running, the arrow keys scroll the display,
       and the right-shifted arrow keys move the window to the
       corresponding boundary.  The [ATTN] key terminates the
       program.

       For more details on the ParOuterLoop, see the chapter
       "Keyboard Control".

                                 Page 108



       21.  Keyboard Control

       A program that requires keyboard input from the user may
       choose from three basic techniques available with internal
       RPL, listed in order of increasing complexity:

         1.  Wait for an individual keystroke, then decide what to
             do with it.

         2.  Call the internal form of INPUT.

         3.  Set up a Parameterized Outer Loop to control an entire
             application environment.

       The following sections discuss the internal numbering scheme
       for keys and each of the above three key processing
       strategies.

       21.1  Key Locations

       The user word WAIT returns a real number which is encoded in
       the form rc.p, where:

                         r = The row of the key
                         c = The column of the key
                         p = The shift plane.

          +--------+----------------+---+---------------------+
          |   p    | Primary Planes | p |     Alpha Planes    |
          +--------+----------------+---+---------------------+
          | 0 or 1 | Unshifted      | 4 | Alpha               |
          |   2    | Left-shifted   | 5 | Alpha left-shifted  |
          |   3    | Right-shifted  | 6 | Alpha right-shifted |
          +--------+----------------+---+---------------------+

       Internally, key locations are represented with two binary
       integers: #KeyCode, which defines a physical key, and
       #Plane, which defines the shift plane.

       The file KEYDEFS.H, supplied with the RPL compiler, defines
       the following terms for key planes:

       DEFINE  kpNoShift        ONE
       DEFINE  kpLeftShift      TWO
       DEFINE  kpRightShift     THREE
       DEFINE  kpANoShift       FOUR
       DEFINE  kpALeftShift     FIVE
       DEFINE  kpARightShft     SIX

                                 Page 109



       Keys are numbered internally from 1 to 49, starting at the
       upper left corner of the keyboard.  Primary key definitions
       are also provided in KEYDEFS.H.  Here are a few of them:

       DEFINE  kcMenuKey1       ONE
       DEFINE  kcMenuKey2       TWO
       DEFINE  kcMenuKey3       THREE
       DEFINE  kcMenuKey4       FOUR
       DEFINE  kcMenuKey5       FIVE
       DEFINE  kcMenuKey6       SIX
       DEFINE  kcMathMenu       SEVEN
       DEFINE  kcPrgmMenu       EIGHT
       DEFINE  kcCustomMenu     NINE
            ...
       DEFINE  KcPlus           FORTYNINE

       The use of these definitions in source code is encouraged
       for legibility.

       The translation between internal key numbering and rc.p
       numbering may be carried out with two words:

       Ck&DecKeyLoc    ( %rc.p --> #KeyCode #Plane )
       CodePl>%rc.p    ( #KeyCode #Plane --> %rc.p )

       21.2  Waiting for a Key

       If an application needs to wait for a single key, such as a
       yes-no-attn type decision, it is best to use the word
       WaitForKey, which returns a fully formed keystroke.
       WaitForKey also keeps the HP 48 in a low-power state until a
       key is pressed and handles the alpha and shift annunciators
       and alarm processing.

       The following words are available:

       CHECKKEY        ( --> #KeyCode TRUE )
                       ( --> FALSE )
                         Returns, but does not pop, the next
                         key in the buffer.
       FLUSHKEYS       ( --> )
                         Flush the key buffer.
       GETTOUCH        ( --> #KeyCode TRUE )
                       ( --> FALSE )
                         Pops next key from buffer.
       KEYINBUFFER?    ( --> FLAG )
                         Returns TRUE if a key is in the buffer,
                         otherwise returns FALSE.
       ATTN?           ( --> flag )
                         Returns TRUE if [ATTN] has been pressed
       ATTNFLGCLR      ( --> )
                         Clears the attn key flag (does not
                         flush attn key from buffer)
       WaitForKey      ( --> #KeyCode #Plane )
                         Returns next fully formed keystroke.

                                 Page 110



       21.3  InputLine

       The word InputLine is the core of the user word INPUT as
       well as the prompt for equation names (NEW).  InputLine does
       the following:

        + Displays the prompt in display area 2a,

        + Sets the keyboard entry modes,

        + Initializes the edit line,

        + Accepts user input until [ENTER] is either explicitly or
          implicitly pressed,

        + Parses, evaluates, or just returns the user-input edit
          line,

        + Returns TRUE if exited by Enter or FALSE if aborted by
          Attn.

       The stack on entry must contain the following:

        $Prompt    The prompt to be displayed during user input
        $EditLine  The initial edit line
        CursorPos  The initial edit line cursor position, specified
                   as a binary integer character number or a two-
                   element list of binary integer row and column
                   numbers.  For all numbers, #0 indicates the end
                   of the edit line, row, or column.
        #Ins/Rep   The initial insert/replace mode:
                     #0    current insert/replace mode
                     #1    insert mode
                     #2    replace mode
        #Entry     The initial entry mode:
                     #0    current entry mode plus program entry
                     #1    program/immediate entry
                     #2    program/algebraic entry
        #AlphaLock The initial alpha-lock mode:
                     #0    current alpha lock mode
                     #1    alpha lock enabled
                     #2    alpha lock disabled
        ILMenu     The initial InputLine menu in the format
                   specified by "ParOuterLoop"
        #ILMenuRow The initial InputLine menu row number in the
                   format specified by "ParOuterLoop"
        AttnAbort? A flag specifying whether pressing Attn while
                   a non-null edit line exists should abort
                   "InputLine" (TRUE) or just clear the edit
                   line (FALSE)
        #Parse     How to process the resulting edit line:
                     #0    Return the edit line as a string
                     #1    Return the edit line as a string AND
                           as a parsed object
                     #2    Parse and evaluate the edit line

                                 Page 111



       InputLine returns different results, depending on the
       initial value of #Parse:

        #Parse  Stack              Description
        ------  -----------------  ------------------------------
          #0    $EditLine TRUE     Edit line
          #1    $EditLine ob TRUE  Edit line and parsed edit line
          #2    Ob1 ... Obn TRUE   Resulting object or objects
                FALSE              Attn pressed to abort edit

       21.3.1  InputLine_Example

       The example call to InputLine shown below prompts the user
       for a variable name. If the user enters a valid name, the
       name and TRUE are returned, otherwise FALSE is returned.

         ( --> Ob TRUE | FALSE )
       ::
         "Enter name:" ( *Prompt string* )
         NULL$         ( *No default name* )
         ONEONE        ( *Initial edit line & cursor pos* )
         ONEONE        ( *Insert mode & prog/immed. entry* )
         NULL{}        ( *No edit menu* )
         ONE           ( *Menu row* )
         FALSE         ( *Attn clears edit line* )
         ONE           ( *Return edit line and parsed ob* )
         InputLine     ( ($editline ob TRUE) | (FALSE) )
         NOTcaseFALSE  ( *Exit if Attn pressed* )
         SWAP NULL$?   ( *Exit if blank edit line* )
         casedrop FALSE
         DUPTYPEIDNT?  ( *Check if ob is id* )
         caseTRUE      ( *Yes, exit true* )
         DROPFALSE     ( *No, drop ob and FALSE* )
       ;

                                 Page 112



       21.4  The Parameterized Outer Loop

       In this section, the term "parameterized outer loop" is used
       to refer to a usage of the RPL word "ParOuterLoop", or a
       combined usage of its fundamental component utilities
       (described below), all of which can be envisioned as words
       that take over the keyboard and display until a specified
       condition is met.

       The parameterized outer loop, "ParOuterLoop", takes nine
       arguments, in order:

          AppDisplay The display update object to be evaluated
                    before each key evaluation.  "AppDisplay"
                    should handle display updating not handled by
                    the keys themselves, and should also perform
                    special handling of errors.

          AppKeys   The hard key assignments, a secondary object in
                    the format described below.

          NonAppKeyOK? A flag specifying whether the hard keys not
                    assigned by the application should perform
                    their default actions or be canceled.

          DoStdKeys? A flag used in conjunction with "NonAppKeyOK?"
                    specifying whether standard key definitions are
                    to be used for non-application keys instead of
                    default key processing.

          AppMenu   The menu key specification, a secondary or list
                    in the format specified in the menu key
                    assignments document, or FALSE.

          #AppMenuRow The initial application menu row number.  For
                    most applications, this should be binary
                    integer one.

          SuspendOK? A flag specifying whether or not any user
                    command that would create a suspended
                    environment and restart the system outer loop
                    should instead generate an error.

          ExitCond  An object that evaluates to TRUE when the outer
                    loop is to be exited, or FALSE otherwise.
                    "ExitCond" is evaluated before each application
                    display update and key evaluation.

          AppError  The error-handling object to be evaluated if an
                    error occurs during the key evaluation part of
                    the parameterized outer loop.

       The parameterized outer loop itself returns no results.
       However, any of the keys used by the application can return
       results to the data stack or in any manner desired.

                                 Page 113



       21.4.1  The_Parameterized_Outer_Loop_Utilities

       The parameterized outer loop word "ParOuterLoop" consists
       entirely of calls (with proper error handling) to its four
       RPL utility words, in order:

          POLSaveUI Saves the current user interface in a temporary
                    environment.  Takes no arguments and returns no
                    results.

          POLSetUI  Sets the current user interface according to
                    the same parameters required by "ParOuterLoop".
                    Returns no results.

          POLKeyUI  Displays, reads and evaluates keys, handles
                    errors, and exits according to the user
                    interface specified by "POLSetUI".  Takes no
                    arguments and returns no results.

          POLRestoreUI Restores the user interface saved by
                    "POLSaveUI" and abandons the temporary
                    environment.  Takes no arguments and returns no
                    results.

       (In addition to the four utilities above. utility
       "POLResUI&Err" is used to protect the saved user interface
       in the event of an error that's not handled within the
       parameterized outer loop.  Refer to "Parameterized Outer
       Loop Operation" and "Handling Errors with the Utilities",
       below.)

       These utilities can be used by applications that require
       greater control over the user interface.  For example:

          + For optimum performance an application can create a
            temporary environment with null-named temporary
            variables after calling "POLSaveUI", then access the
            null-named variables "within" "POLKeyUI", since only
            "POLSaveUI" creates a parameterized outer loop
            temporary environment and only "POLRestoreUI" accesses
            the same environment.

          + To avoid unnecessary and time-consuming overhead, an
            application that uses multiple consecutive (not nested)
            parameterized outer loops can call "POLSaveUI" at the
            start of the application, then call "POLSetUI" and
            "POLKeyUI" multiple times throughout the application,
            then finally call "POLRestoreUI" at the end of the
            application.

                                 Page 114



       21.4.2  Overview_of_the_Parameterized_Outer_Loop

       The parameterized outer loop operates as outlined below.

            ("POLSaveUI")
            Save the system or current application's
            user interface

            If error in

              ("POLSetUI")
              Set the new application's user interface

              ("POLKeyUI")
              While "ExitCond" evaluates to FALSE {
                Evaluate "AppDisplay"
                If error in
                  Read and evaluate a key
                Then
                  Evaluate "AppError"
                }

            Then

              Restore the saved user interface and
              ERRJMP

            ("POLRestoreUI")
            Restore the saved user interface

       The parameterized outer loop creates one temporary
       environment when it saves the current user interface, and it
       abandons this environment when it restores a saved user
       interface.  This means that words that operate on the
       topmost temporary environment, such as "1GETLAM", should NOT
       be used "within" the parameterized outer loop (e.g., in a
       key definition or the application display update object)
       UNLESS the desired temporary environment is created AFTER
       calling "POLSaveUI" and abandoned before calling
       "POLRestoreUI".  For temporary environments created before
       calling the parameterized outer loop, applications should
       set up and operate on NAMED temporary variables.

                                 Page 115



       21.4.3  Handling_Errors_with_the_Utilities

       To insure that it can properly restore a saved user
       interface if an error occurs within an application, the
       parameterized outer loop protects the saved user interface
       by setting an error trap immediately after its call to
       "POLSaveUI", as shown below:

       ::
         POLSaveUI             ( save the current user interface )
         ERRSET                ( prepare to restore saved user interface
                               in case of error )
           ::
             POLSetUI          ( set the application's user interface )
             POLKeyUI          ( display, read, and evaluate )
           ;
         ERRTRAP               ( if error, then restore the saved
                               user interface and error )
           POLResUI&Err
         POLRestoreUI          ( restore the saved user interface )
       ;

       The purpose of supported utility "POLResUI&Err" is to
       restore the user interface saved by "POLSaveUI" and then to
       error.

       Any applications that use the parameterized outer loop
       utilities instead of "ParOuterLoop" are REQUIRED to include
       this same level of error handling protection of the saved
       user interface.

       21.4.4  The_Display

       There is no default display in the parameterized outer loop;
       the application is responsible for setting up the initial
       display and updating it.

       There are two ways that an application can update the
       display: with outer loop parameter "AppDisplay" or with key
       assignments.  For example, if the user presses the right-
       arrow key to move a highlight from one matrix column to
       another, the key assignment for the right-arrow key can
       either pass information to "AppDisplay" (often implicitly)
       to handle the change, or the key assignment object can
       change the display itself.  Both methods have advantages
       under different circumstances.

                                 Page 116



       21.4.5  Error_Handling

       The error-handling outer loop parameter "AppError" is
       responsible for processing any errors generated during key
       evaluation within the parameterized outer loop. If an error
       occurs, "AppError" is evaluated.  "AppError" should
       determine the specific error and act accordingly. If an
       application can not handle any errors, then "AppError"
       should be specified as "ERRJMP".

       21.4.6  Hard_Key_Assignments

       Any HP 48 key, in any of the six planes (unshifted, left-
       shifted, right-shifted, alpha-unshifted, alpha-left-shifted,
       and alpha-right-shifted) can be assigned for the duration of
       the parameterized outer loop. The outer loop parameter
       "AppKeys" specifies the keys to assign and their new
       assignments.

       If a key is not assigned by an application, and outer loop
       parameter "NonAppKeyOK?" is TRUE, then standard or default
       key processing occurs, according to outer loop parameter
       "DoStdKeys?".  For example, if user keys mode is on and the
       key has a user key assignment, then the user key is
       processed if "DoStdKeys?" is FALSE, or the standard key is
       processed if "DoStdKeys?" is TRUE. If "NonAppKeyOK?" is
       FALSE, then all non-application keys issue a canceled key
       warning beep and do nothing else.

       In general, NonAppKeyOK? should be FALSE to maintain total
       control.

                                 Page 117



       Application key assignments are specified by the secondary
       object "AppKeys" passed to the parameterized outer loop.
       The procedure must take as its arguments a key code and a
       plane specification, and must return the desired key
       definition and TRUE if the application defines the key, or
       FALSE if the application doesn't.  Specifically, the key
       assignment procedure's stack diagram must look like this:

            ( #KeyCode #Plane --> KeyDef TRUE )
            ( #KeyCode #Plane --> FALSE )

       The key definition result "KeyDef" will be processed by the
       main key handler, "DoKeyOb".

       Application key assignments specified as procedures
       generally have logic in the form

            If #Plane is NoShift  (or first plane of interest)
            Then
              Process #KeyCode in the unshifted plane
              Else
                If #Plane is LeftShift  (or next plane of interest)
                Then
                  Process #KeyCode in the left-shifted plane
              ...
                  Else signal no definition

       This can be implemented in RPL in the form

            kpNoShift   #=casedrop :: (process noshift plane) ;
            kpLeftShift #=casedrop :: (process l-shift plane) ;
            2DROP FALSE

       Each plane handler generally has logic in the form

            If #KeyCode is 7  (or first key code of interest)
            Then
              Return the key code 7 definition and TRUE
            Else
              If #KeyCode is 20  (or next key code of interest)
              Then
                Return the key code 20 definition and TRUE
                Else signal no definition

       This can be implemented in RPL in the following form:

            kcMathMenu ?CaseKeyDef :: TakeOver (process MTH) ;
            kcTan      ?CaseKeyDef :: TakeOver (process TAN) ;
            ( all other keys )
            DROP FALSE

                                 Page 118



       In order to save code and to make key definitions more
       readable, the control structure word "?CaseKeyDef" replaces
       the

            #=casedrop :: ' <KeyDef> TRUE ;

       portions of code with

            ?CaseKeyDef <KeyDef>

       More specifically, "?CaseKeyDef" is used in the form

             ... #KeyCode #TestKeyCode ?CaseKeyDef <KeyDef> ...

       If "#KeyCode" equals "#TestKeyCode", then "?CaseKeyDef"
       drops "#KeyCode" and "#TestKeyCode", pushes "KeyDef" and
       TRUE, and exits the calling secondary.  Otherwise,
       "?CaseKeyDef" drops "#TestKeyCode" only, skips "KeyDef", and
       continues.

       21.4.7  Menu_Key_Assignments

       An application can specify any initial menu key assignments,
       in any of three planes (unshifted, left-shifted, and right-
       shifted), to be initialized when the parameterized outer
       loop is started.  The outer loop parameter "AppMenu"
       specifies the initialization object (a list or secondary)
       for the application's menu, or FALSE, indicating that the
       current menu is to be left intact.  When the parameterized
       outer loop is exited, the previous menu is restored
       automatically.

       If "AppMenu" is a null list, then a set of six null menu key
       assignments are made.  If "AppMenu" is FALSE, then the menu
       present when the parameterized outer loop is called is
       maintained.

       NOTE: hard key assignments have priority over menu key
       assignments.  This means that the hard key handler must
       include the following line if menu keys are to be processed:

                DUP#<7 casedrpfls

       The parameter AppMenu takes the following form:

       {
         Menu Key 1 Definition
         Menu Key 2 Definition
           ...
         Menu Key n Definition
       }

       Where each menu key definition takes one of three
       following forms:

                                 Page 119



         NullMenuKey

         { LabelObj :: TakeOver (Action) ; }

         { LabelObj {
                      :: TakeOver (Primary Action) ;
                      :: TakeOver (LeftShifted Action) ;
                    }

         { LabelObj {
                      :: TakeOver (Primary Action) ;
                      :: TakeOver (LfShifted Action) ;
                      :: TakeOver (RtShifted Action) ;
                    }
         }

       A LabelObj may be any object, but is usually a string or an
       8x21 grob. See the example below for an illustration of
       softkey use.  The word NullMenuKey inserts a blank menu key
       which just beeps when pressed.

       21.4.8  Preventing_Suspended_Environments

       An application may need to allow arbitrary commands and user
       objects to be evaluated, but don't want the current
       environment to be suspended by the "HALT" or "PROMPT"
       commands.  If the outer loop parameter "SuspendOK?" is
       FALSE, then any command that would suspend the environment
       generates a "HALT not Allowed" error, allowing "AppError" to
       handle it.  If "SuspendOK?" is TRUE, then the application
       must be prepared to handle the consequences. The dangers
       here are many and severe.

       For all foreseeable applications, "SuspendOK?" should be
       FALSE.

       21.4.9  Specifying_an_Exit_Condition

       The outer loop parameter "ExitCond" is an object that
       evaluates to TRUE when the outer loop is to exited, or FALSE
       otherwise.  "ExitCond" is evaluated before each key
       evaluation.

                                 Page 120



       21.4.10  ParOuterLoop_Example

       *---------------------------------------------------------

       *
       * Include the header file KEYDEFS.H, which defines words
       * like kcUpArrow at physical key numbers.
       *
       INCLUDE KEYDEFS.H
       *
       * Include the eight characters needed for binary download
       *
       ASSEMBLE
               NIBASC  /HPHP48-D/
       RPL
       *
       * Begin the secondary
       *
       ::
         RECLAIMDISP           ( *Claim the alpha display* )
         ClrDA1IsStat          ( *Temporarily disable clock* )
       *                       ( *Try removing ClrDA1IsStat* )
         ZEROZERO              ( #0 #0 )
         150 150 MAKEGROB      ( #0 #0 150x150grob )
         XYGROBDISP            (  )
       *
       * Draw diagonal lines.  Remember that LINEON requires
       * requires #x2>#x1!
       *
         ZEROZERO              ( #x1 #y1 )
         149 149               ( #x1 #y1 #x2 #y2 )
         LINEON                ( *Draw line* )
         ZERO 149              ( #x1 #y1 )
         149 ZERO              ( #x1 #y1 #x2 #y2 )
         LINEON                ( *Draw line* )
       *
       * Place text
       *
         HARDBUFF
         75 50 "SCROLLING"     ( HBgrob 75 150 "SCROLLING" )
         150 CENTER$3x5        ( HBgrob )
         75 100 "EXAMPLE"      ( HBgrob 75 100 "EXAMPLE" )
         150 CENTER$3x5        ( HBgrob )
         DROPFALSE             ( FALSE )
         { LAM Exit } BIND     ( *Bind POL exit flag* )
         ' DispMenu.1          ( *Display Action shows menu* )
         ' ::                  ( *Hard key handler*   )
           kpNoShift #=casedrop
             ::
                DUP#<7 casedrpfls ( *Enable softkeys* )
                kcUpArrow    ?CaseKeyDef
                                 :: TakeOver SCROLLUP ;
                kcLeftArrow  ?CaseKeyDef
                                 :: TakeOver SCROLLLEFT ;
                kcDownArrow  ?CaseKeyDef
                                 :: TakeOver SCROLLDOWN ;

                                 Page 121



                kcRightArrow ?CaseKeyDef
                                 :: TakeOver SCROLLRIGHT ;
                kcOn         ?CaseKeyDef
                                 :: TakeOver
                                    TRUE ' LAM Exit STO ;
                kcRightShift   #=casedrpfls
                DROP 'DoBadKeyT
             ;
           2DROP 'DoBadKeyT
         ;
         TrueTrue              ( *Key control flags* )
         {
           { "TOP" :: TakeOver JUMPTOP ; }
           { "BOT" :: TakeOver JUMPBOT ; }
           { "LEFT" :: TakeOver JUMPLEFT ; }
           { "RIGHT" :: TakeOver JUMPRIGHT ; }
           NullMenuKey
           { "QUIT" :: TakeOver TRUE ' LAM Exit STO ; }
         }
         ONEFALSE              ( *1st row, no suspend* )
         ' LAM Exit            ( *App exit condition* )
         ' ERRJMP              ( *Error handler* )
         ParOuterLoop          ( *Run the ParOuterLoop* )
         RECLAIMDISP           ( *Resize and clear display* )
         SetDAsBAD             ( *Redraw display* )
       ;

       The above code, if stored in a file SCRSFKY.S, can be
       compiled as follows:

       RPLCOMPILE SCRSFKY.S
       SASM SCRSFKY.A
       SLOAD -H SCRSFKY.M

       This example also assumes that the file KEYDEFS.H is either
       in the same directory or the source file has been modified
       to reflect the location of KEYDEFS.H.  The loader control
       file SCRSFKY.M looks like this:

       OU SCRSFKY
       LL SCRSFKY.LR
       SU XR
       SE ENTRIES.O
       RE SCRSFKY.O

       The final file, SCRSFKY, may be binary downloaded to the
       HP 48 for a test.

       When SCRSFKY is running, the arrow keys scroll the display,
       and the labeled softkeys move the window to the
       corresponding boundary.  The [ATTN] key terminates the
       program.

                                 Page 122



       22.  System Commands

       The following words set, test, or control various system
       conditions or modes.

       ALARM?          ( --> flag )
                         Returns TRUE if an alarm is due
       AtUserStack     ( --> )
                         Declares user ownership of all objects
                         on the stack.
       CLKTICKS        ( --> hxs )
                         Returns 13 nibble hex string reflecting
                         the number of ticks since 01/01/0000.
                         There are 8192 ticks per second.
       ClrSysFlag      ( # --> )
                         Clears system flag from #1 to #64
       ClrUserFlag     ( # --> )
                         Clears user flag from #1 to #64
       DATE            ( --> %date )
                         Returns real number date
       DOBEEP          ( %freq %duration --> )
                         BEEP command
       DOBIN           ( --> )
                         Set base mode to BINary
       DODEC           ( --> )
                         Set base mode to DECimal
       DOENG           ( # --> )
                         Set ENG display with # (0-11) digits
       DOFIX           ( # --> )
                         Set FIX display with # (0-11) digits
       DOHEX           ( --> )
                         Set base mode to HEXadecimal
       DOOCT           ( --> )
                         Set base mode to OCTal
       DOSCI           ( # --> )
                         Set SCI display with # (0-11) digits
       DOSTD           ( --> )
                         Set STD display mode
       DPRADIX?        ( --> flag )
                         Returns TRUE if current radix is .
                         Returns FALSE if current radix is ,
       SETDEG          ( --> )
                         Set DEGREES angle mode
       SETGRAD         ( --> )
                         Set GRADS angle mode
       SETRAD          ( --> )
                         Set RADIANS angle mode
       SLOW            ( --> )
                         15msec delay
       TOD             ( --> %time )
                         Returns time of day in h.ms form
       TestSysFlag     ( # --> flag )
                         Returns TRUE if system flag # is set
       TestUserFlag    ( # --> flag )
                         Returns TRUE if user flag # is set
       VERYSLOW        ( --> )
                         300 msec delay
       VERYVERYSLOW    ( --> )

                                 Page 123



                         3 sec delay
       WORDSIZE        ( --> # )
                         Returns binary wordsize
       dostws          ( # --> )
                         Stores binary wordsize
       dowait          ( %seconds --> )
                         Waits for %seconds in light sleep

                                 Page 124


	Introduction
	RPL Principles
	Origins
	Mathematical Control
	Formal Definitions
	Execution
	EVAL
	Data_Class_Objects
	Identifier_Class_Objects
	Procedure_Class_Objects
	Object_Skipover_and_SEMI
	RPL_Pointers

	Memory Management
	User RPL and System RPL
	Programming in System RPL
	Sample RPL Program
	The_Source_File
	Compiling_the_Program


	Object Structures
	Object Types
	Identifier_Object
	Temporary_Identifier_Object
	ROM_Pointer_Object
	Binary_Integer_Object
	Real_Number_Object
	Extended_Real_Number_Object
	Complex_Number_Object
	Extended_Complex_Number_Object
	Array_Object
	Linked_Array_Object
	Character_String_Object
	Hex_String_Object
	Character_Object
	Unit_Object
	Code_Object
	Primitive_Code_Object
	Program_Object
	List_Object
	Symbolic_Object
	Directory_Object
	Graphics_Object

	Terminology and Abbreviations.

	Binary Integers
	Built-in Binary Integers
	Binary Integer Manipulation
	Arithmetic_Functions
	Conversion_Functions


	Character Constants
	Hex & Character Strings
	Character Strings
	Hex Strings

	Real Numbers
	Built-in Reals
	Real Number Functions

	Complex Numbers
	Built-in Complex Numbers
	Conversion Words
	Complex Functions

	Arrays
	Composite Objects
	Tagged Objects
	Unit Objects
	Temporary Variables and Temporary Environments
	Structure of the Temporary Environment Area
	Named vs. Unnamed Temporary Variables
	Provided Words for Temporary Variables
	Coding Suggestions

	Checking Arguments
	Number of Arguments
	Dispatching on Argument Type
	Examples

	Loop Control Structures
	Indefinite Loops
	Definite Loops
	Provided_Words
	Examples


	Error Generation & Trapping
	Trapping: ERRSET and ERRTRAP
	Action of ERRJMP
	The Protection Word
	Error Words

	Test and Control
	Flags and Tests
	General_Object_Tests
	Binary_Integer_Comparisons
	Decimal_Number_Tests

	Words that Operate on the Runstream
	If/Then/Else
	CASE words

	Stack Operations
	Memory Operations
	Temporary Memory
	Variables and Directories
	Directories

	The Hidden Directory
	Additional Memory Utilities

	Display Management & Graphics
	Display Organization
	Preparing the Display
	Controlling Display Refresh
	Clearing the Display
	Annunciator Control
	Display Coordinates
	Window_Coordinates

	Displaying Text
	Standard_Text_Display_Areas
	Temporary_Messages

	Graphics Objects
	Warnings
	Graphics_Tools
	Grob_Dimensions
	Built-in_Grobs
	Menu_Display_Utilities

	Scrolling the Display

	Keyboard Control
	Key Locations
	Waiting for a Key
	InputLine
	InputLine_Example

	The Parameterized Outer Loop
	The_Parameterized_Outer_Loop_Utilities
	Overview_of_the_Parameterized_Outer_Loop
	Handling_Errors_with_the_Utilities
	The_Display
	Error_Handling
	Hard_Key_Assignments
	Menu_Key_Assignments
	Preventing_Suspended_Environments
	Specifying_an_Exit_Condition
	ParOuterLoop_Example


	System Commands

